Suppr超能文献

使用属性网络嵌入进行蛋白质特征融合,以预测蛋白质-蛋白质相互作用。

Protein features fusion using attributed network embedding for predicting protein-protein interaction.

机构信息

Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.

出版信息

BMC Genomics. 2024 May 13;25(1):466. doi: 10.1186/s12864-024-10361-8.

Abstract

BACKGROUND

Protein-protein interactions (PPIs) hold significant importance in biology, with precise PPI prediction as a pivotal factor in comprehending cellular processes and facilitating drug design. However, experimental determination of PPIs is laborious, time-consuming, and often constrained by technical limitations.

METHODS

We introduce a new node representation method based on initial information fusion, called FFANE, which amalgamates PPI networks and protein sequence data to enhance the precision of PPIs' prediction. A Gaussian kernel similarity matrix is initially established by leveraging protein structural resemblances. Concurrently, protein sequence similarities are gauged using the Levenshtein distance, enabling the capture of diverse protein attributes. Subsequently, to construct an initial information matrix, these two feature matrices are merged by employing weighted fusion to achieve an organic amalgamation of structural and sequence details. To gain a more profound understanding of the amalgamated features, a Stacked Autoencoder (SAE) is employed for encoding learning, thereby yielding more representative feature representations. Ultimately, classification models are trained to predict PPIs by using the well-learned fusion feature.

RESULTS

When employing 5-fold cross-validation experiments on SVM, our proposed method achieved average accuracies of 94.28%, 97.69%, and 84.05% in terms of Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori datasets, respectively.

CONCLUSION

Experimental findings across various authentic datasets validate the efficacy and superiority of this fusion feature representation approach, underscoring its potential value in bioinformatics.

摘要

背景

蛋白质-蛋白质相互作用(PPIs)在生物学中具有重要意义,精确的 PPI 预测是理解细胞过程和促进药物设计的关键因素。然而,PPIs 的实验确定既费力又耗时,并且常常受到技术限制的限制。

方法

我们引入了一种新的基于初始信息融合的节点表示方法,称为 FFANE,它将 PPI 网络和蛋白质序列数据融合在一起,以提高 PPI 预测的精度。最初通过利用蛋白质结构相似性来建立高斯核相似性矩阵。同时,使用 Levenshtein 距离来衡量蛋白质序列相似性,从而捕获各种蛋白质属性。随后,为了构建初始信息矩阵,通过使用加权融合将这两个特征矩阵合并,实现结构和序列细节的有机融合。为了更深入地了解融合特征,使用堆叠自动编码器(SAE)进行编码学习,从而产生更具代表性的特征表示。最终,通过使用经过良好学习的融合特征来训练分类模型来预测 PPIs。

结果

在 SVM 上进行 5 折交叉验证实验时,我们提出的方法在酿酒酵母、人类和幽门螺杆菌数据集上的平均准确率分别为 94.28%、97.69%和 84.05%。

结论

在各种真实数据集上的实验结果验证了这种融合特征表示方法的有效性和优越性,突出了它在生物信息学中的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e67b/11092193/d069bcab291c/12864_2024_10361_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验