Suppr超能文献

RL-Chord:基于CLSTM的深度强化学习旋律和声化

RL-Chord: CLSTM-Based Melody Harmonization Using Deep Reinforcement Learning.

作者信息

Ji Shulei, Yang Xinyu, Luo Jing, Li Juan

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11128-11141. doi: 10.1109/TNNLS.2023.3248793. Epub 2024 Aug 5.

Abstract

Automatic music generation is the combination of artificial intelligence and art, in which melody harmonization is a significant and challenging task. However, previous recurrent neural network (RNN)-based work fails to maintain long-term dependency and neglects the guidance of music theory. In this article, we first devise a universal chord representation with a fixed small dimension, which can cover most existing chords and is easy to expand. Then a novel melody harmonization system based on reinforcement learning (RL), RL-Chord, is proposed to generate high-quality chord progressions. Specifically, a melody conditional LSTM (CLSTM) model is put forward that learns the transition and duration of chords well, based on which RL algorithms with three well-designed reward modules are combined to construct RL-Chord. We compare three widely used RL algorithms (i.e., policy gradient, Q -learning, and actor-critic algorithms) on the melody harmonization task for the first time and prove the superiority of deep Q -network (DQN). Furthermore, a style classifier is devised to fine-tune the pretrained DQN-Chord for zero-shot Chinese folk (CF) melody harmonization. Experimental results demonstrate that the proposed model can generate harmonious and fluent chord progressions for diverse melodies. Quantitatively, DQN-Chord achieves better performance than the compared methods on multiple evaluation metrics, such as chord histogram similarity (CHS), chord tonal distance (CTD), and melody-chord tonal distance (MCTD).

摘要

自动音乐生成是人工智能与艺术的结合,其中旋律和声是一项重要且具有挑战性的任务。然而,以往基于循环神经网络(RNN)的工作未能保持长期依赖性,并且忽视了音乐理论的指导。在本文中,我们首先设计了一种具有固定小维度的通用和弦表示,它可以涵盖大多数现有的和弦并且易于扩展。然后提出了一种基于强化学习(RL)的新颖旋律和声系统RL-Chord,用于生成高质量的和弦进行。具体而言,提出了一种旋律条件长短期记忆(CLSTM)模型,该模型能够很好地学习和弦的转换和持续时间,在此基础上,结合具有三个精心设计的奖励模块的RL算法来构建RL-Chord。我们首次在旋律和声任务上比较了三种广泛使用的RL算法(即策略梯度、Q学习和演员评论家算法),并证明了深度Q网络(DQN)的优越性。此外,设计了一种风格分类器,对预训练的DQN-Chord进行微调,以实现对中国民间(CF)旋律的零样本和声。实验结果表明,所提出的模型可以为不同的旋律生成和谐流畅的和弦进行。在定量方面,DQN-Chord在多个评估指标上,如和弦直方图相似度(CHS)、和弦音调距离(CTD)和旋律-和弦音调距离(MCTD),比比较方法具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验