Suppr超能文献

SSGCNet:一种用于癫痫脑电信号分类的稀疏谱图卷积网络。

SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification.

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12157-12171. doi: 10.1109/TNNLS.2023.3252569. Epub 2024 Sep 3.

Abstract

In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neighborhood field graph (WNFG) to represent EEG signals. The WNFG reduces redundant edges between graph nodes and has lower graph generation time and memory usage than the baseline solution. The sequential graph convolutional network is further developed from a WNFG by combining sparse weight pruning and the alternating direction method of multipliers (ADMM). Compared with the state-of-the-art method, our method has the same classification accuracy on the Bonn public dataset and the spikes and slow waves (SSW) clinical real dataset when the connection rate is ten times smaller.

摘要

本文提出了一种用于癫痫脑电 (EEG) 信号分类的稀疏谱图卷积网络 (SSGCNet)。目的是在保持高分类精度的同时开发一个轻量化的深度学习模型。为此,我们提出了一种加权邻域场图 (WNFG) 来表示 EEG 信号。WNFG 减少了图节点之间的冗余边,与基线解决方案相比,生成时间和内存使用量更低。通过结合稀疏权重剪枝和交替方向乘子法 (ADMM),进一步从 WNFG 中开发出顺序图卷积网络。与最先进的方法相比,当连接率小十倍时,我们的方法在 Bonn 公共数据集和 spikes and slow waves (SSW) 临床真实数据集上具有相同的分类精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验