Suppr超能文献

图数据库和图学习在临床应用中的重要性。

The importance of graph databases and graph learning for clinical applications.

机构信息

Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.

Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.

出版信息

Database (Oxford). 2023 Jul 10;2023. doi: 10.1093/database/baad045.

Abstract

The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. Graphical abstract.

摘要

临床数据的数量和复杂性不断增加,这就需要一种合适的方法来存储和分析这些数据。传统的方法使用表格结构(关系型数据库)来存储数据,从而使存储和检索临床领域的相关数据变得复杂。图形数据库通过将数据存储在图形中作为节点(顶点),并用边(链接)连接这些节点,为解决这个问题提供了很好的解决方案。底层的图形结构可用于后续的数据分析(图形学习)。图形学习由两部分组成:图形表示学习和图形分析。图形表示学习旨在将高维输入图形降低到低维表示。然后,图形分析使用获得的表示形式来执行可视化、分类、链路预测和聚类等分析任务,这些任务可用于解决特定于领域的问题。在本次调查中,我们回顾了当前最先进的图形数据库管理系统、图形学习算法以及临床领域的各种图形应用程序。此外,我们提供了一个全面的用例,以更清楚地了解复杂的图形学习算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f0/10332447/dd47f352dd55/baad045fa.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验