IEEE Trans Med Imaging. 2023 Sep;42(9):2666-2677. doi: 10.1109/TMI.2023.3263465. Epub 2023 Aug 31.
Recognition and quantitative analytics of histopathological cells are the golden standard for diagnosing multiple cancers. Despite recent advances in deep learning techniques that have been widely investigated for the automated segmentation of various types of histopathological cells, the heavy dependency on specific histopathological image types with sufficient supervised annotations, as well as the limited access to clinical data in hospitals, still pose significant challenges in the application of computer-aided diagnosis in pathology. In this paper, we focus on the model generalization of cell segmentation towards cross-tissue histopathological images. Remarkably, a novel target-specific finetuning-based self-supervised domain adaptation framework is proposed to transfer the cell segmentation model to unlabeled target datasets, without access to source datasets and annotations. When performed on the target unlabeled histopathological image set, the proposed method only needs to tune very few parameters of the pre-trained model in a self-supervised manner. Considering the morphological properties of pathological cells, we introduce two constraint terms at both local and global levels into this framework to access more reliable predictions. The proposed cross-domain framework is validated on three different types of histopathological tissues, showing promising performance in self-supervised cell segmentation. Additionally, the whole framework can be further applied to clinical tools in pathology without accessing the original training image data. The code and dataset are released at: https://github.com/NeuronXJTU/SFDA-CellSeg.
病理组织细胞的识别和定量分析是诊断多种癌症的金标准。尽管深度学习技术在各种类型的病理组织细胞的自动分割方面取得了广泛的研究进展,但由于对特定的病理组织图像类型具有很强的依赖性,并且需要足够的监督标注,以及在医院中对临床数据的有限访问,这仍然对病理学中的计算机辅助诊断的应用提出了重大挑战。在本文中,我们专注于细胞分割的模型泛化,以实现跨组织的病理图像。值得注意的是,提出了一种新颖的基于目标特定微调的自监督领域自适应框架,以将细胞分割模型转移到无标签的目标数据集,而无需访问源数据集和标注。当在目标未标记的病理图像集上执行时,所提出的方法只需以自监督的方式微调预训练模型的极少数参数。考虑到病理细胞的形态特征,我们在该框架中引入了两个约束项,分别在局部和全局级别上,以获得更可靠的预测。所提出的跨域框架在三种不同类型的病理组织上进行了验证,在无监督细胞分割方面表现出了有前景的性能。此外,整个框架可以进一步应用于病理学中的临床工具,而无需访问原始的训练图像数据。代码和数据集可在 https://github.com/NeuronXJTU/SFDA-CellSeg 上获得。