Suppr超能文献

无监督领域自适应在手术室中用于临床医生姿态估计和实例分割。

Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room.

机构信息

ICube, University of Strasbourg, CNRS, France.

Radiology Department, University Hospital of Strasbourg, France.

出版信息

Med Image Anal. 2022 Aug;80:102525. doi: 10.1016/j.media.2022.102525. Epub 2022 Jul 3.

Abstract

The fine-grained localization of clinicians in the operating room (OR) is a key component to design the new generation of OR support systems. Computer vision models for person pixel-based segmentation and body-keypoints detection are needed to better understand the clinical activities and the spatial layout of the OR. This is challenging, not only because OR images are very different from traditional vision datasets, but also because data and annotations are hard to collect and generate in the OR due to privacy concerns. To address these concerns, we first study how joint person pose estimation and instance segmentation can be performed on low resolutions images with downsampling factors from 1x to 12x. Second, to address the domain shift and the lack of annotations, we propose a novel unsupervised domain adaptation method, called AdaptOR, to adapt a model from an in-the-wild labeled source domain to a statistically different unlabeled target domain. We propose to exploit explicit geometric constraints on the different augmentations of the unlabeled target domain image to generate accurate pseudo labels and use these pseudo labels to train the model on high- and low-resolution OR images in a self-training framework. Furthermore, we propose disentangled feature normalization to handle the statistically different source and target domain data. Extensive experimental results with detailed ablation studies on the two OR datasets MVOR+ and TUM-OR-test show the effectiveness of our approach against strongly constructed baselines, especially on the low-resolution privacy-preserving OR images. Finally, we show the generality of our method as a semi-supervised learning (SSL) method on the large-scale COCO dataset, where we achieve comparable results with as few as 1% of labeled supervision against a model trained with 100% labeled supervision. Code is available at https://github.com/CAMMA-public/HPE-AdaptOR.

摘要

手术室(OR)中临床医生的细粒度定位是设计新一代 OR 支持系统的关键组成部分。需要基于人体像素的分割和身体关键点检测的计算机视觉模型,以便更好地理解临床活动和 OR 的空间布局。这是具有挑战性的,不仅因为 OR 图像与传统视觉数据集非常不同,而且由于隐私问题,在 OR 中很难收集和生成数据和注释。为了解决这些问题,我们首先研究如何在从 1x 到 12x 的下采样因子的低分辨率图像上执行联合人体姿势估计和实例分割。其次,为了解决域转移和注释不足的问题,我们提出了一种新颖的无监督域自适应方法,称为 AdaptOR,用于将模型从有标签的野外源域自适应到统计上不同的无标签目标域。我们建议利用无标签目标域图像的不同增强的显式几何约束来生成准确的伪标签,并在高分辨率和低分辨率 OR 图像上使用这些伪标签在自训练框架中训练模型。此外,我们提出解缠特征归一化来处理统计上不同的源域和目标域数据。在 MVOR+和 TUM-OR-test 两个 OR 数据集上进行了详细消融研究的广泛实验结果表明,我们的方法在强烈构建的基线方面非常有效,特别是在隐私保护的低分辨率 OR 图像方面。最后,我们展示了我们的方法作为一种半监督学习(SSL)方法在大规模 COCO 数据集上的通用性,其中我们在使用 100%有标签监督训练的模型上,仅使用 1%的有标签监督就可以实现可比的结果。代码可在 https://github.com/CAMMA-public/HPE-AdaptOR 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验