Suppr超能文献

基于临床指数和胎心监护特征的机器学习模型鉴别窒息胎儿-波尔图回顾性产时研究。

Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses-Porto retrospective intrapartum study.

机构信息

Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Porto, Portugal.

Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal.

出版信息

Front Public Health. 2023 Mar 20;11:1099263. doi: 10.3389/fpubh.2023.1099263. eCollection 2023.

Abstract

INTRODUCTION

Perinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model.

OBJECTIVES

This exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices.

METHODS

Single gestations data from a retrospective unicentric study from Centro Hospitalar e Universitário do Porto de São João (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models.

RESULTS

The data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%].

CONCLUSION

Both BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).

摘要

简介

围产期窒息是新生儿死亡的最常见原因之一,每年影响全球约 400 万新生儿,导致 100 万人死亡。造成这种高发病率的主要原因之一是缺乏对此病理学的共识性早期诊断方法。为母婴提供风险适当的医疗保健对于提高医疗保健系统的质量至关重要。因此,有必要研究可以改善围产期窒息预测的模型。获得胎心监护图(CTG)信号与各种临床参数相结合对于开发成功的模型可能至关重要。

目的

这项探索性工作旨在基于临床参数和胎儿心率(fHR)指数开发围产期窒息的预测模型。

方法

从 2010 年至 2018 年,波尔图圣若昂大学中心医院(CHUSJ)的回顾性单中心研究中收集了单胎妊娠数据。使用 Omniview-SisPorto 采集和分析 CTG,估计了几个 fHR 特征。临床变量来自由 ObsCare 存储的电子临床记录中获取。信息熵和压缩描述了 fHR 时间序列的复杂性。通过二元逻辑回归(BLR)和朴素贝叶斯(NB)模型研究了这些变量对围产期窒息预测的贡献。

结果

数据包含 517 例病例,其中 15 例为病理性病例。窒息预测模型显示出有前途的结果,接收器操作特征曲线(AUC)>70%。在 NB 方法中,最好的模型结合了临床和 SisPorto 特征。最好的模型是单变量 BLR,与变量压缩比尺度 2(CR2)结合,AUC 为 94.93%[94.55;95.31%]。

结论

BLR 和贝叶斯模型都有各自的优点和缺点。预测围产期窒息的表现最好的模型是具有 CR2 变量的单变量 BLR,这表明在围产期窒息检测中非线性指数的重要性。未来的研究应该探索包括临床和 CTG 特征(线性和非线性)的败血症检测决策支持系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d639/10074982/3e1b71dbb9a6/fpubh-11-1099263-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验