Suppr超能文献

环二鸟苷酸(cyclic-di-GMP)在大肠杆菌中的第二个作用:通过改变代谢流来阻止细胞生长。

A Second Role for the Second Messenger Cyclic-di-GMP in E. coli: Arresting Cell Growth by Altering Metabolic Flow.

机构信息

Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, Texas, USA.

出版信息

mBio. 2023 Apr 25;14(2):e0061923. doi: 10.1128/mbio.00619-23. Epub 2023 Apr 10.

Abstract

c-di-GMP primarily controls motile to sessile transitions in bacteria. Diguanylate cyclases (DGCs) catalyze the synthesis of c-di-GMP from two GTP molecules. Typically, bacteria encode multiple DGCs that are activated by specific environmental signals. Their catalytic activity is modulated by c-di-GMP binding to autoinhibitory sites (I-sites). YfiN is a conserved inner membrane DGC that lacks these sites. Instead, YfiN activity is directly repressed by periplasmic YfiR, which is inactivated by redox stress. In Escherichia coli, an additional envelope stress causes YfiN to relocate to the mid-cell to inhibit cell division by interacting with the division machinery. Here, we report a third activity for YfiN in E. coli, where cell growth is inhibited without YfiN relocating to the division site. This action of YfiN is only observed when the bacteria are cultured on gluconeogenic carbon sources, and is dependent on absence of the autoinhibitory sites. Restoration of I-site function relieves the growth-arrest phenotype, and disabling this function in a heterologous DGC causes acquisition of this phenotype. Arrested cells are tolerant to a wide range of antibiotics. We show that the likely cause of growth arrest is depletion of cellular GTP from run-away synthesis of c-di-GMP, explaining the dependence of growth arrest on gluconeogenic carbon sources that exhaust more GTP during production of glucose. This is the first report of c-di-GMP-mediated growth arrest by altering metabolic flow. The c-di-GMP signaling network in bacteria not only controls a variety of cellular processes such as motility, biofilms, cell development, and virulence, but does so by a dizzying array of mechanisms. The DGC YfiN singularly represents the versatility of this network in that it not only inhibits motility and promotes biofilms, but also arrests growth in Escherichia coli by relocating to the mid-cell and blocking cell division. The work described here reveals that YfiN arrests growth by yet another mechanism in E. coli, changing metabolic flow. This function of YfiN, or of DGCs without autoinhibitory I-sites, may contribute to antibiotic tolerant persisters in relevant niches such as the gut where gluconeogenic sugars are found.

摘要

c-di-GMP 主要控制细菌从游动态到固着态的转变。双鸟苷酸环化酶(DGCs)催化从两个 GTP 分子合成 c-di-GMP。通常,细菌编码多个 DGCs,这些 DGCs被特定的环境信号激活。它们的催化活性受到 c-di-GMP 与自动抑制位点(I 位点)结合的调节。YfiN 是一种保守的内膜 DGC,缺乏这些位点。相反,YfiN 的活性被周质中的 YfiR 直接抑制,YfiR 会在氧化还原应激下失活。在大肠杆菌中,另一种包膜应激导致 YfiN 重新定位到细胞中部,通过与分裂机制相互作用来抑制细胞分裂。在这里,我们报道了大肠杆菌中 YfiN 的第三种活性,即在没有 YfiN 重新定位到分裂部位的情况下,细胞生长受到抑制。只有当细菌在糖异生碳源上培养时,YfiN 才会表现出这种作用,而且这种作用依赖于缺乏自动抑制位点。恢复 I 位点功能可缓解生长停滞表型,而在异源 DGC 中破坏该功能会导致获得该表型。被阻断的细胞对广泛的抗生素具有耐受性。我们表明,生长停滞的可能原因是细胞内 GTP 耗尽,导致 c-di-GMP 的失控合成,解释了生长停滞对糖异生碳源的依赖性,因为在葡萄糖生成过程中,这些碳源会消耗更多的 GTP。这是第一个通过改变代谢流来报告 c-di-GMP 介导的生长停滞的报告。细菌中的 c-di-GMP 信号网络不仅通过各种机制控制着细胞的多种过程,如运动性、生物膜、细胞发育和毒力,而且还通过各种机制来控制。DGC YfiN 独特地代表了该网络的多功能性,因为它不仅抑制运动性并促进生物膜形成,而且还通过重新定位到细胞中部并阻断细胞分裂来阻止大肠杆菌的生长。这里描述的工作表明,YfiN 通过改变代谢流在大肠杆菌中通过另一种机制阻止生长。YfiN 的这种功能,或者没有自动抑制 I 位点的 DGC 的功能,可能有助于相关生态位(如肠道)中对抗生素耐受的持久菌,因为肠道中存在糖异生糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b65/10127611/332267bf22a6/mbio.00619-23-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验