IEEE J Biomed Health Inform. 2024 Feb;28(2):621-632. doi: 10.1109/JBHI.2023.3265857. Epub 2024 Feb 5.
Remote photoplethysmography (rPPG) has been used to measure vital signs such as heart rate, heart rate variability, blood pressure (BP), and blood oxygen. Recent studies adopt features developed with photoplethysmography (PPG) to achieve contactless BP measurement via rPPG. These features can be classified into two groups: time or phase differences from multiple signals, or waveform feature analysis from a single signal. Here we devise a solution to extract the time difference information from the rPPG signal captured at 30 FPS. We also propose a deep learning model architecture to estimate BP from the extracted features. To prevent overfitting and compensate for the lack of data, we leverage a multi-model design and generate synthetic data. We also use subject information related to BP to assist in model learning. For real-world usage, the subject information is replaced with values estimated from face images, with performance that is still better than the state-of-the-art. To our best knowledge, the improvements can be achieved because of: 1) the model selection with estimated subject information, 2) replacing the estimated subject information with the real one, 3) the InfoGAN assistance training (synthetic data generation), and 4) the time difference features as model input. To evaluate the performance of the proposed method, we conduct a series of experiments, including dynamic BP measurement for many single subjects and nighttime BP measurement with infrared lighting. Our approach reduces the MAE from 15.49 to 8.78 mmHg for systolic blood pressure (SBP) and 10.56 to 6.16 mmHg for diastolic blood pressure(DBP) on a self-constructed rPPG dataset. On the Taipei Veterans General Hospital(TVGH) dataset for nighttime applications, the MAE is reduced from 21.58 to 11.12 mmHg for SBP and 9.74 to 7.59 mmHg for DBP, with improvement ratios of 48.47% and 22.07% respectively.
远程光体积描记术 (rPPG) 已被用于测量心率、心率变异性、血压 (BP) 和血氧等生命体征。最近的研究采用了基于光体积描记术 (PPG) 的特征来通过 rPPG 实现非接触式 BP 测量。这些特征可分为两组:来自多个信号的时间或相位差,或来自单个信号的波形特征分析。在这里,我们设计了一种从 30 FPS 采集的 rPPG 信号中提取时间差信息的解决方案。我们还提出了一种深度学习模型架构,用于从提取的特征估计 BP。为了防止过拟合和弥补数据不足,我们利用多模型设计并生成合成数据。我们还使用与 BP 相关的主题信息来辅助模型学习。对于实际使用,主题信息将被从面部图像中估计的值替换,其性能仍优于最先进的方法。据我们所知,改进可以通过以下方式实现:1)使用估计的主题信息进行模型选择,2)用真实信息替换估计的主题信息,3)InfoGAN 辅助训练(生成合成数据),以及 4)作为模型输入的时间差特征。为了评估所提出方法的性能,我们进行了一系列实验,包括对许多单个受试者进行动态 BP 测量和使用红外照明进行夜间 BP 测量。我们的方法将基于自建 rPPG 数据集的收缩压 (SBP) 的 MAE 从 15.49mmHg 降低到 8.78mmHg,舒张压 (DBP) 的 MAE 从 10.56mmHg 降低到 6.16mmHg。对于夜间应用的台北荣民总医院 (TVGH) 数据集,SBP 的 MAE 从 21.58mmHg 降低到 11.12mmHg,DBP 的 MAE 从 9.74mmHg 降低到 7.59mmHg,分别提高了 48.47%和 22.07%。