Suppr超能文献

鉴定结肠肿瘤转移的空间蛋白质组学特征:一种数字空间分析方法。

Identification of Spatial Proteomic Signatures of Colon Tumor Metastasis: A Digital Spatial Profiling Approach.

机构信息

Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire; Department of Dermatology, Dartmouth Health, Lebanon, New Hampshire; Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire.

Dartmouth College, Hanover, New Hampshire.

出版信息

Am J Pathol. 2023 Jun;193(6):778-795. doi: 10.1016/j.ajpath.2023.02.020. Epub 2023 Apr 8.

Abstract

Over 150,000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually >50,000 individuals are estimated to die of CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. CRC tumors are removed en bloc with surrounding vasculature and lymphatics. Examination of regional lymph nodes at the time of surgical resection is essential for prognostication. Developing alternative approaches to indirectly assess recurrence risk would have utility in cases where lymph node yield is incomplete or inadequate. Spatially dependent, immune cell-specific (eg, tumor-infiltrating lymphocytes), proteomic, and transcriptomic expression patterns inside and around the tumor-the tumor immune microenvironment-can predict nodal/distant metastasis and probe the coordinated immune response from the primary tumor site. The comprehensive characterization of tumor-infiltrating lymphocytes and other immune infiltrates is possible using highly multiplexed spatial omics technologies, such as the GeoMX Digital Spatial Profiler. In this study, machine learning and differential co-expression analyses helped identify biomarkers from Digital Spatial Profiler-assayed protein expression patterns inside, at the invasive margin, and away from the tumor, associated with extracellular matrix remodeling (eg, granzyme B and fibronectin), immune suppression (eg, forkhead box P3), exhaustion and cytotoxicity (eg, CD8), Programmed death ligand 1-expressing dendritic cells, and neutrophil proliferation, among other concomitant alterations. Further investigation of these biomarkers may reveal independent risk factors of CRC metastasis that can be formulated into low-cost, widely available assays.

摘要

每年有超过 15 万美国人被诊断患有结直肠癌(CRC),每年估计有超过 5 万人死于 CRC,这就需要改进筛查、预后、疾病管理和治疗选择。CRC 肿瘤与周围的血管和淋巴管整块切除。在手术切除时检查局部淋巴结对于预后至关重要。开发替代方法来间接评估复发风险在淋巴结产量不完整或不足的情况下将具有实用性。肿瘤内和周围的空间依赖、免疫细胞特异性(例如肿瘤浸润淋巴细胞)、蛋白质组学和转录组学表达模式——肿瘤免疫微环境——可以预测淋巴结/远处转移,并探测来自原发性肿瘤部位的协调免疫反应。使用高度多重化的空间组学技术,如 GeoMX 数字空间分析器,可以对肿瘤浸润淋巴细胞和其他免疫浸润物进行全面表征。在这项研究中,机器学习和差异共表达分析有助于从数字空间分析器分析的肿瘤内、侵袭边缘和远离肿瘤的蛋白质表达模式中识别与细胞外基质重塑(例如颗粒酶 B 和纤维连接蛋白)、免疫抑制(例如叉头框 P3)、衰竭和细胞毒性(例如 CD8)、表达程序性死亡配体 1 的树突状细胞以及中性粒细胞增殖相关的生物标志物,以及其他伴随改变。对这些生物标志物的进一步研究可能揭示 CRC 转移的独立风险因素,可以将其制定成低成本、广泛可用的检测方法。

相似文献

引用本文的文献

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
4
Latent Gaussian Model Boosting.潜在高斯模型增强
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1894-1905. doi: 10.1109/TPAMI.2022.3168152. Epub 2023 Jan 6.
5
Museum of spatial transcriptomics.空间转录组学博物馆。
Nat Methods. 2022 May;19(5):534-546. doi: 10.1038/s41592-022-01409-2. Epub 2022 Mar 10.
6
csdR, an R package for differential co-expression analysis.csdR,一个用于差异共表达分析的 R 包。
BMC Bioinformatics. 2022 Feb 19;23(1):79. doi: 10.1186/s12859-022-04605-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验