Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA.
Mol Psychiatry. 2023 Jun;28(6):2355-2369. doi: 10.1038/s41380-023-02051-w. Epub 2023 Apr 10.
The discovery of prenatal and neonatal molecular biomarkers has the potential to yield insights into autism spectrum disorder (ASD) and facilitate early diagnosis. We characterized metabolomic profiles in ASD using plasma samples collected in the Norwegian Autism Birth Cohort from mothers at weeks 17-21 gestation (maternal mid-gestation, MMG, n = 408) and from children on the day of birth (cord blood, CB, n = 418). We analyzed associations using sex-stratified adjusted logistic regression models with Bayesian analyses. Chemical enrichment analyses (ChemRICH) were performed to determine altered chemical clusters. We also employed machine learning algorithms to assess the utility of metabolomics as ASD biomarkers. We identified ASD associations with a variety of chemical compounds including arachidonic acid, glutamate, and glutamine, and metabolite clusters including hydroxy eicospentaenoic acids, phosphatidylcholines, and ceramides in MMG and CB plasma that are consistent with inflammation, disruption of membrane integrity, and impaired neurotransmission and neurotoxicity. Girls with ASD have disruption of ether/non-ether phospholipid balance in the MMG plasma that is similar to that found in other neurodevelopmental disorders. ASD boys in the CB analyses had the highest number of dysregulated chemical clusters. Machine learning classifiers distinguished ASD cases from controls with area under the receiver operating characteristic (AUROC) values ranging from 0.710 to 0.853. Predictive performance was better in CB analyses than in MMG. These findings may provide new insights into the sex-specific differences in ASD and have implications for discovery of biomarkers that may enable early detection and intervention.
产前和新生儿分子生物标志物的发现有可能深入了解自闭症谱系障碍(ASD),并促进早期诊断。我们使用在挪威自闭症出生队列中从妊娠 17-21 周的母亲(母体中期,MMG,n=408)和出生当天的儿童(脐血,CB,n=418)采集的血浆样本,对 ASD 的代谢组学特征进行了描述。我们使用性别分层调整后的逻辑回归模型和贝叶斯分析来分析关联。进行了化学富集分析(ChemRICH)以确定改变的化学簇。我们还采用机器学习算法来评估代谢组学作为 ASD 生物标志物的效用。我们确定了与各种化学化合物(包括花生四烯酸、谷氨酸和谷氨酰胺)以及与炎症、膜完整性破坏以及神经传递和神经毒性受损相关的代谢物簇(羟基二十碳五烯酸、磷脂酰胆碱和神经酰胺)在 MMG 和 CB 血浆中的 ASD 关联,这些与炎症、膜完整性破坏以及神经传递和神经毒性受损相关。患有 ASD 的女孩在 MMG 血浆中存在醚/非醚磷脂平衡破坏,与其他神经发育障碍中发现的情况相似。在 CB 分析中,患有 ASD 的男孩具有最多数量的失调化学簇。机器学习分类器以 0.710 至 0.853 的接收器工作特征(AUROC)值区分 ASD 病例和对照。CB 分析中的预测性能优于 MMG。这些发现可能为 ASD 中的性别特异性差异提供新的见解,并为发现可能实现早期检测和干预的生物标志物提供依据。