Suppr超能文献

使用新生儿筛查样本中的非靶向代谢组学研究自闭症。

Studying Autism Using Untargeted Metabolomics in Newborn Screening Samples.

机构信息

Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.

The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Fuglesangs Allé 26, 8210, Aarhus, Denmark.

出版信息

J Mol Neurosci. 2021 Jul;71(7):1378-1393. doi: 10.1007/s12031-020-01787-2. Epub 2021 Jan 30.

Abstract

Main risk factors of autism spectrum disorder (ASD) include both genetic and non-genetic factors, especially prenatal and perinatal events. Newborn screening dried blood spot (DBS) samples have great potential for the study of early biochemical markers of disease. To study DBS strengths and limitations in the context of ASD research, we analyzed the metabolomic profiles of newborns later diagnosed with ASD. We performed LC-MS/MS-based untargeted metabolomics on DBS from 37 case-control pairs randomly selected from the iPSYCH sample. After preprocessing using MZmine 2.41, metabolites were putatively annotated using mzCloud, GNPS feature-based molecular networking, and MolNetEnhancer. A total of 4360 mass spectral features were detected, of which 150 (113 unique) could be putatively annotated at a high confidence level. Chemical structure information at a broad level could be retrieved for 1009 metabolites, covering 31 chemical classes. Although no clear distinction between cases and controls was revealed, our method covered many metabolites previously associated with ASD, suggesting that biochemical markers of ASD are present at birth and may be monitored during newborn screening. Additionally, we observed that gestational age, age at sampling, and month of birth influence the metabolomic profiles of newborn DBS, which informs us on the important confounders to address in future studies.

摘要

自闭症谱系障碍(ASD)的主要风险因素包括遗传和非遗传因素,尤其是产前和围产期事件。新生儿干血斑(DBS)样本筛查对于研究疾病的早期生化标志物具有巨大潜力。为了研究 DBS 在 ASD 研究背景下的优势和局限性,我们分析了后来被诊断为 ASD 的新生儿的 DBS 代谢组学特征。我们对从 iPSYCH 样本中随机选择的 37 对病例对照进行了基于 LC-MS/MS 的非靶向代谢组学分析。使用 MZmine 2.41 进行预处理后,使用 mzCloud、GNPS 基于特征的分子网络和 MolNetEnhancer 对代谢物进行了推测注释。共检测到 4360 个质谱特征,其中 150 个(113 个独特)可以在高置信度水平上进行推测注释。可以检索到 1009 种代谢物的广泛化学结构信息,涵盖 31 种化学类别。尽管病例和对照组之间没有明显的区别,但我们的方法涵盖了许多先前与 ASD 相关的代谢物,这表明 ASD 的生化标志物在出生时就存在,并且可能在新生儿筛查期间进行监测。此外,我们观察到胎龄、采样时的年龄和出生月份会影响新生儿 DBS 的代谢组学特征,这提醒我们在未来的研究中需要解决重要的混杂因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c4f/8233278/2afe5237a88c/12031_2020_1787_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验