Suppr超能文献

使用机器学习模型预测肺癌患者术后肺功能

Prediction of Postoperative Lung Function in Lung Cancer Patients Using Machine Learning Models.

作者信息

Kwon Oh Beom, Han Solji, Lee Hwa Young, Kang Hye Seon, Kim Sung Kyoung, Kim Ju Sang, Park Chan Kwon, Lee Sang Haak, Kim Seung Joon, Kim Jin Woo, Yeo Chang Dong

机构信息

Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Department of Applied Statistics, Yonsei University, Seoul, Republic of Korea.

出版信息

Tuberc Respir Dis (Seoul). 2023 Jul;86(3):203-215. doi: 10.4046/trd.2022.0048. Epub 2023 Apr 11.

Abstract

BACKGROUND

Surgical resection is the standard treatment for early-stage lung cancer. Since postoperative lung function is related to mortality, predicted postoperative lung function is used to determine the treatment modality. The aim of this study was to evaluate the predictive performance of linear regression and machine learning models.

METHODS

We extracted data from the Clinical Data Warehouse and developed three sets: set I, the linear regression model; set II, machine learning models omitting the missing data: and set III, machine learning models imputing the missing data. Six machine learning models, the least absolute shrinkage and selection operator (LASSO), Ridge regression, ElasticNet, Random Forest, eXtreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM) were implemented. The forced expiratory volume in 1 second measured 6 months after surgery was defined as the outcome. Five-fold cross-validation was performed for hyperparameter tuning of the machine learning models. The dataset was split into training and test datasets at a 70:30 ratio. Implementation was done after dataset splitting in set III. Predictive performance was evaluated by R2 and mean squared error (MSE) in the three sets.

RESULTS

A total of 1,487 patients were included in sets I and III and 896 patients were included in set II. In set I, the R2 value was 0.27 and in set II, LightGBM was the best model with the highest R2 value of 0.5 and the lowest MSE of 154.95. In set III, LightGBM was the best model with the highest R2 value of 0.56 and the lowest MSE of 174.07.

CONCLUSION

The LightGBM model showed the best performance in predicting postoperative lung function.

摘要

背景

手术切除是早期肺癌的标准治疗方法。由于术后肺功能与死亡率相关,因此使用预测的术后肺功能来确定治疗方式。本研究的目的是评估线性回归和机器学习模型的预测性能。

方法

我们从临床数据仓库中提取数据,并开发了三组:第一组,线性回归模型;第二组,省略缺失数据的机器学习模型;第三组,插补缺失数据的机器学习模型。实施了六种机器学习模型,即最小绝对收缩和选择算子(LASSO)、岭回归、弹性网络、随机森林、极端梯度提升(XGBoost)和轻梯度提升机(LightGBM)。将术后6个月测量的第1秒用力呼气量定义为结果。对机器学习模型进行五折交叉验证以进行超参数调整。数据集按70:30的比例分为训练集和测试集。第三组在数据集拆分后进行实施。通过三组中的R2和均方误差(MSE)评估预测性能。

结果

第一组和第三组共纳入1487例患者,第二组纳入896例患者。在第一组中,R2值为0.27,在第二组中,LightGBM是最佳模型,R2值最高为0.5,MSE最低为154.95。在第三组中,LightGBM是最佳模型,R2值最高为0.56,MSE最低为174.07。

结论

LightGBM模型在预测术后肺功能方面表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cce/10323210/c391c7502b24/trd-2022-0048f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验