Tran Hong Huy, Jaruchotiratanasakul Nadasinee, Xiang Zhenting, Pandey Nil Kanatha, Oh Min Jun, Liu Yuan, Ren Zhi, Babeer Alaa, Zdilla Michael J, Cormode David P, Karabucak Bekir, Lee Daeyeon, Steager Edward B, Koo Hyun
Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Adv Healthc Mater. 2025 Mar;14(8):e2402306. doi: 10.1002/adhm.202402306. Epub 2024 Oct 14.
Bacterial infections in irregular and branched confinements pose significant therapeutic challenges. Despite their high antimicrobial efficacy, enzyme-mimicking nanoparticles (nanozymes) face difficulties in achieving localized catalysis at distant infection sites within confined spaces. Incorporating nanozymes into microrobots enables the delivery of catalytic agents to hard-to-reach areas, but poor nanoparticle dispersibility and distribution during fabrication hinder their catalytic performance. To address these challenges, a nanozyme-shelled microrobotic platform is introduced using magnetic microcapsules with collective and adaptive mobility for automated navigation and localized catalysis within complex confinements. Using double emulsions produced from microfluidics as templates, iron oxide and silica nanoparticles are assembled into 100-µm microcapsules, which self-organize into multi-unit, millimeter-size assemblies under rotating magnetic fields. These microcapsules exhibit high peroxidase-like activity, efficiently catalyzing hydrogen peroxide to generate reactive oxygen species (ROS). Notably, microcapsule assemblies display remarkable collective navigation within arched and branched confinements, reaching the targeted apical regions of the tooth canal with high accuracy. Furthermore, these nanozyme-shelled microrobots perform rapid catalysis in situ and effectively kill biofilms on contact via ROS generation, enabling localized antibiofilm action. This study demonstrates a facile method of integrating nanozymes onto a versatile microrobotic platform to address current needs for targeted therapeutic catalysis in complex and confined microenvironments.
不规则且分支状受限空间内的细菌感染带来了重大的治疗挑战。尽管模拟酶纳米颗粒(纳米酶)具有很高的抗菌功效,但在受限空间内将其催化作用定位于远处感染部位仍面临困难。将纳米酶整合到微型机器人中能够将催化剂输送到难以到达的区域,但在制造过程中纳米颗粒的分散性和分布不佳会阻碍其催化性能。为应对这些挑战,本文介绍了一种纳米酶包覆的微型机器人平台,该平台使用具有集体和自适应移动性的磁性微胶囊,可在复杂受限空间内实现自动导航和局部催化。以微流控产生的双乳液为模板,将氧化铁和二氧化硅纳米颗粒组装成100微米的微胶囊,这些微胶囊在旋转磁场下自组织成多单元、毫米级的组件。这些微胶囊表现出高过氧化物酶样活性,能有效催化过氧化氢产生活性氧(ROS)。值得注意的是,微胶囊组件在拱形和分支状受限空间内展现出显著的集体导航能力,能高精度到达牙根管的目标顶端区域。此外,这些纳米酶包覆的微型机器人可在原位进行快速催化,并通过产生活性氧有效杀灭接触到的生物膜,实现局部抗生物膜作用。本研究展示了一种将纳米酶整合到通用微型机器人平台上的简便方法,以满足当前在复杂受限微环境中进行靶向治疗催化的需求。