Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
Dev Cell. 2023 Apr 10;58(7):597-615.e10. doi: 10.1016/j.devcel.2023.03.002.
Loss of fragile X messenger ribonucleoprotein (FMRP) causes fragile X syndrome (FXS), the most prevalent form of inherited intellectual disability. Here, we show that FMRP interacts with the voltage-dependent anion channel (VDAC) to regulate the formation and function of endoplasmic reticulum (ER)-mitochondria contact sites (ERMCSs), structures that are critical for mitochondrial calcium (mito-Ca) homeostasis. FMRP-deficient cells feature excessive ERMCS formation and ER-to-mitochondria Ca transfer. Genetic and pharmacological inhibition of VDAC or other ERMCS components restored synaptic structure, function, and plasticity and rescued locomotion and cognitive deficits of the Drosophila dFmr1 mutant. Expressing FMRP C-terminal domain (FMRP-C), which confers FMRP-VDAC interaction, rescued the ERMCS formation and mito-Ca homeostasis defects in FXS patient iPSC-derived neurons and locomotion and cognitive deficits in Fmr1 knockout mice. These results identify altered ERMCS formation and mito-Ca homeostasis as contributors to FXS and offer potential therapeutic targets.
脆性 X 信使核糖核蛋白 (FMRP) 的缺失会导致脆性 X 综合征 (FXS),这是最常见的遗传性智力障碍形式。在这里,我们表明 FMRP 与电压依赖性阴离子通道 (VDAC) 相互作用,以调节内质网 (ER)-线粒体接触位点 (ERMCS) 的形成和功能,这些结构对于线粒体钙 (mito-Ca) 稳态至关重要。FMRP 缺陷细胞表现出过度的 ERMCS 形成和 ER 到线粒体 Ca 转移。VDAC 或其他 ERMCS 成分的遗传和药理学抑制恢复了突触结构、功能和可塑性,并挽救了果蝇 dFmr1 突变体的运动和认知缺陷。表达赋予 FMRP-VDAC 相互作用的 FMRP C 端结构域 (FMRP-C),可挽救 FXS 患者 iPSC 衍生神经元中的 ERMCS 形成和 mito-Ca 稳态缺陷,以及 Fmr1 敲除小鼠的运动和认知缺陷。这些结果表明,改变的 ERMCS 形成和 mito-Ca 稳态是 FXS 的原因,并提供了潜在的治疗靶点。