Servicio de Salud de Castilla-La Mancha, Complejo Hospitalario Universitario de Albacete, Servicio de Salud Mental, 02004, Albacete, Spain.
Departmento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071, Albacete, Spain.
Sci Rep. 2023 Apr 12;13(1):6007. doi: 10.1038/s41598-023-31277-5.
The negative, mood-congruent cognitive bias described in depression, as well as excessive rumination, have been found to interfere with emotional processing. This study focuses on the assessment of facial recognition of emotions in patients with depression through a new set of dynamic virtual faces (DVFs). The sample consisted of 54 stable patients compared to 54 healthy controls. The experiment consisted in an emotion recognition task using non-immersive virtual reality (VR) with DVFs of six basic emotions and neutral expression. Patients with depression showed a worst performance in facial affect recognition compared to healthy controls. Age of onset was negatively correlated with emotion recognition and no correlation was observed for duration of illness or number of lifetime hospitalizations. There was no correlation for the depression group between emotion recognition and degree of psychopathology, excessive rumination, degree of functioning, or quality of life. Hence, it is important to improve and validate VR tools for emotion recognition to achieve greater methodological homogeneity of studies and to be able to establish more conclusive results.
抑郁症中描述的消极、情绪一致的认知偏差以及过度反刍,已被发现会干扰情绪处理。本研究通过一组新的动态虚拟面孔 (DVF) 来关注评估抑郁症患者的面部情绪识别。该样本包括 54 名稳定期患者和 54 名健康对照。实验采用非沉浸式虚拟现实 (VR) 进行,使用六个基本情绪和中性表情的 DVF 进行情绪识别任务。与健康对照组相比,抑郁症患者在面部情感识别方面表现更差。发病年龄与情绪识别呈负相关,而患病时间或一生中住院次数与情绪识别无关。在抑郁症组中,情绪识别与精神病理学程度、过度反刍、功能程度或生活质量之间没有相关性。因此,重要的是要改进和验证 VR 工具的情绪识别功能,以实现研究方法的更大一致性,并能够得出更具结论性的结果。