Suppr超能文献

多序列MRI数据中肾母细胞瘤的基准测试:当前临床实践为何失败?哪些流行的分割算法表现良好?

Benchmarking Wilms' tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well?

作者信息

Müller Sabine, Farag Iva, Weickert Joachim, Braun Yvonne, Lollert André, Dobberstein Jonas, Hötker Andreas, Graf Norbert

机构信息

Saarland University, Medical Center, Department of Pediatric Oncology and Hematology, Homburg, Germany.

Saarland University, Faculty of Mathematics and Computer Science, Mathematical Image Analysis Group, Saarbrücken, Germany.

出版信息

J Med Imaging (Bellingham). 2019 Jul;6(3):034001. doi: 10.1117/1.JMI.6.3.034001. Epub 2019 Jul 19.

Abstract

Wilms' tumor is one of the most frequent malignant solid tumors in childhood. Accurate segmentation of tumor tissue is a key step during therapy and treatment planning. Since it is difficult to obtain a comprehensive set of tumor data of children, there is no benchmark so far allowing evaluation of the quality of human or computer-based segmentations. The contributions in our paper are threefold: (i) we present the first heterogeneous Wilms' tumor benchmark data set. It contains multisequence MRI data sets before and after chemotherapy, along with ground truth annotation, approximated based on the consensus of five human experts. (ii) We analyze human expert annotations and interrater variability, finding that the current clinical practice of determining tumor volume is inaccurate and that manual annotations after chemotherapy may differ substantially. (iii) We evaluate six computer-based segmentation methods, ranging from classical approaches to recent deep-learning techniques. We show that the best ones offer a quality comparable to human expert annotations.

摘要

肾母细胞瘤是儿童期最常见的恶性实体肿瘤之一。肿瘤组织的精确分割是治疗和治疗计划中的关键步骤。由于难以获取儿童肿瘤的全面数据集,目前尚无用于评估基于人工或计算机分割质量的基准。我们论文的贡献有三个方面:(i)我们展示了首个异质性肾母细胞瘤基准数据集。它包含化疗前后的多序列磁共振成像数据集,以及基于五位人类专家的共识近似得出的真实标注。(ii)我们分析了人类专家的标注和评分者间的变异性,发现当前确定肿瘤体积的临床实践不准确,且化疗后的手动标注可能存在很大差异。(iii)我们评估了六种基于计算机的分割方法,从经典方法到最新的深度学习技术。我们表明,最佳方法的质量可与人类专家的标注相媲美。

相似文献

3
Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.基于全卷积神经网络的 FLAIR MRI 脑肿瘤分割。
Comput Methods Programs Biomed. 2019 Jul;176:135-148. doi: 10.1016/j.cmpb.2019.05.006. Epub 2019 May 11.

引用本文的文献

7
Robustness of brain tumor segmentation.脑肿瘤分割的稳健性
J Med Imaging (Bellingham). 2020 Nov;7(6):064006. doi: 10.1117/1.JMI.7.6.064006. Epub 2020 Dec 30.

本文引用的文献

3
A benchmark for comparison of dental radiography analysis algorithms.一种用于比较牙科放射摄影分析算法的基准。
Med Image Anal. 2016 Jul;31:63-76. doi: 10.1016/j.media.2016.02.004. Epub 2016 Feb 28.
6
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
7
Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge.胸部 CT 配准方法评估:EMPIRE10 挑战赛。
IEEE Trans Med Imaging. 2011 Nov;30(11):1901-20. doi: 10.1109/TMI.2011.2158349. Epub 2011 May 31.
9
Wilms' tumor.肾母细胞瘤
Curr Opin Pediatr. 2009 Jun;21(3):357-64. doi: 10.1097/MOP.0b013e32832b323a.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验