Suppr超能文献

将联邦学习与医疗保健系统中的现有信任结构对齐。

Aligning Federated Learning with Existing Trust Structures in Health Care Systems.

机构信息

Machine Learning and Data Analytics (MaD) Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.

出版信息

Int J Environ Res Public Health. 2023 Apr 3;20(7):5378. doi: 10.3390/ijerph20075378.

Abstract

Patient-centered health care information systems (PHSs) on peer-to-peer (P2P) networks (e.g., decentralized personal health records) enable storing data locally at the edge to enhance data sovereignty and resilience to single points of failure. Nonetheless, these systems raise concerns on trust and adoption in medical workflow due to non-alignment to current health care processes and stakeholders' needs. The distributed nature of the data makes it more challenging to train and deploy machine learning models (using traditional methods) at the edge, for instance, for disease prediction. Federated learning (FL) has been proposed as a possible solution to these limitations. However, the P2P PHS architecture challenges current FL solutions because they use centralized engines (or random entities that could pose privacy concerns) for model update aggregation. Consequently, we propose a novel conceptual FL framework, CareNetFL, that is suitable for P2P PHS multi-tier and hybrid architecture and leverages existing trust structures in health care systems to ensure scalability, trust, and security. Entrusted parties (practitioners' nodes) are used in CareNetFL to aggregate local model updates in the network hierarchy for their patients instead of random entities that could actively become malicious. Involving practitioners in their patients' FL model training increases trust and eases access to medical data. The proposed concepts mitigate communication latency and improve FL performance through patient-practitioner clustering, reducing skewed and imbalanced data distributions and system heterogeneity challenges of FL at the edge. The framework also ensures end-to-end security and accountability through leveraging identity-based systems and privacy-preserving techniques that only guarantee security during training.

摘要

基于对等 (P2P) 网络的以患者为中心的医疗保健信息系统 (PHS)(例如,去中心化的个人健康记录)能够在边缘本地存储数据,从而增强数据主权和对单点故障的弹性。然而,由于与当前医疗保健流程和利益相关者的需求不一致,这些系统在医疗工作流程中的信任和采用方面引起了关注。由于数据的分布式特性,因此更难以在边缘(例如,用于疾病预测)训练和部署机器学习模型(使用传统方法)。联邦学习 (FL) 已被提出作为解决这些限制的一种可能方法。然而,P2P PHS 架构挑战了当前的 FL 解决方案,因为它们使用集中式引擎(或可能存在隐私问题的随机实体)来聚合模型更新。因此,我们提出了一种新颖的概念性 FL 框架 CareNetFL,它适用于 P2P PHS 多层和混合架构,并利用医疗保健系统中的现有信任结构来确保可扩展性、信任和安全性。在 CareNetFL 中,受信任的方(从业者节点)用于在网络层次结构中聚合其患者的本地模型更新,而不是可能主动变得恶意的随机实体。让从业者参与其患者的 FL 模型训练可以提高信任度并简化对医疗数据的访问。通过患者-从业者聚类,该框架还通过减少 FL 在边缘的通信延迟和提高 FL 性能来缓解数据分布的倾斜和不平衡问题,并解决系统异质性挑战。该框架还通过利用基于身份的系统和隐私保护技术来确保端到端的安全性和问责制,这些技术仅在培训期间保证安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eaa/10094512/542bad7d939b/ijerph-20-05378-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验