Suppr超能文献

仅使用相邻站点的功率输出预测太阳能光伏电池板在无天气数据情况下的输出。

Predicting the Output of Solar Photovoltaic Panels in the Absence of Weather Data Using Only the Power Output of the Neighbouring Sites.

机构信息

Department of Fire Service Administration, Chodang University, Muan-gun 58530, Republic of Korea.

出版信息

Sensors (Basel). 2023 Mar 23;23(7):3399. doi: 10.3390/s23073399.

Abstract

There is an increasing need for capable models in the forecast of the output of solar photovoltaic panels. These models are vital for optimizing the performance and maintenance of PV systems. There is also a shortage of studies on forecasts of the output power of solar photovoltaics sites in the absence of meteorological data. Unlike common methods, this study explores numerous machine learning algorithms for forecasting the output of solar photovoltaic panels in the absence of weather data such as temperature, humidity and wind speed, which are often used when forecasting the output of solar PV panels. The considered models include Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN) and Transformer. These models were used with the data collected from 50 different solar photo voltaic sites in South Korea, which consist of readings of the output of each of the sites collected at regular intervals. This study focuses on obtaining multistep forecasts for the multi-in multi-out, multi-in uni-out and uni-in uni-out settings. Detailed experimentation was carried out in each of these settings. Finally, for each of these settings and different lookback and forecast lengths, the best models were also identified.

摘要

对于太阳能光伏电池板输出的预测,人们越来越需要有能力的模型。这些模型对于优化光伏系统的性能和维护至关重要。在没有气象数据的情况下,对太阳能光伏电站输出功率的预测研究也很少。与常见的方法不同,本研究探讨了许多机器学习算法,用于在没有气象数据(如温度、湿度和风速)的情况下预测太阳能光伏电池板的输出,这些数据通常用于预测太阳能 PV 电池板的输出。所考虑的模型包括长短期记忆 (LSTM)、门控循环单元 (GRU)、循环神经网络 (RNN) 和转换器。这些模型使用从韩国 50 个不同太阳能光伏站点收集的数据进行了测试,这些数据包括定期采集的每个站点输出的读数。本研究专注于在多输入多输出、多输入单输出和单输入单输出环境中获得多步预测。在每个设置中都进行了详细的实验。最后,针对每个设置和不同的回溯和预测长度,还确定了最佳模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d904/10099047/e10347c9f187/sensors-23-03399-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验