工作记忆的灵活模型。

A Flexible Model of Working Memory.

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA.

出版信息

Neuron. 2019 Jul 3;103(1):147-160.e8. doi: 10.1016/j.neuron.2019.04.020. Epub 2019 May 15.

Abstract

Working memory is fundamental to cognition, allowing one to hold information "in mind." A defining characteristic of working memory is its flexibility: we can hold anything in mind. However, typical models of working memory rely on finely tuned, content-specific attractors to persistently maintain neural activity and therefore do not allow for the flexibility observed in behavior. Here, we present a flexible model of working memory that maintains representations through random recurrent connections between two layers of neurons: a structured "sensory" layer and a randomly connected, unstructured layer. As the interactions are untuned with respect to the content being stored, the network maintains any arbitrary input. However, in our model, this flexibility comes at a cost: the random connections overlap, leading to interference between representations and limiting the memory capacity of the network. Additionally, our model captures several other key behavioral and neurophysiological characteristics of working memory.

摘要

工作记忆是认知的基础,使人们能够“在头脑中”记住信息。工作记忆的一个定义特征是其灵活性:我们可以记住任何东西。然而,典型的工作记忆模型依赖于精细调整的、特定于内容的吸引子来持续维持神经活动,因此不允许观察到行为中的灵活性。在这里,我们提出了一种灵活的工作记忆模型,该模型通过两个神经元层之间的随机递归连接来维持表示:一个结构化的“感觉”层和一个随机连接的、非结构化的层。由于这些相互作用与存储的内容无关,因此网络可以维持任何任意的输入。然而,在我们的模型中,这种灵活性是有代价的:随机连接重叠,导致表示之间的干扰,并限制了网络的记忆容量。此外,我们的模型还捕获了工作记忆的其他几个关键行为和神经生理学特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索