Suppr超能文献

Rad5 和 Rrm3 的解旋酶活性在酿酒酵母中预防重组性 DNA 损伤的过程中存在遗传相互作用。

Helicase activities of Rad5 and Rrm3 genetically interact in the prevention of recombinogenic DNA lesions in Saccharomyces cerevisiae.

机构信息

Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States.

Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, United States; Graduate program in Cell and Molecular Biology, University of South Florida, Tampa, FL 33620, United States; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.

出版信息

DNA Repair (Amst). 2023 Jun;126:103488. doi: 10.1016/j.dnarep.2023.103488. Epub 2023 Mar 30.

Abstract

The genome must be monitored to ensure its duplication is completed accurately to prevent genome instability. In Saccharomyces cerevisiae, the 5' to 3' DNA helicase Rrm3, a member of the conserved PIF1 family, facilitates replication fork progression through an unknown mechanism. Disruption of Rrm3 helicase activity leads to increased replication fork pausing throughout the yeast genome. Here, we show that Rrm3 contributes to replication stress tolerance in the absence of the fork reversal activity of Rad5, defined by its HIRAN domain and DNA helicase activity, but not in the absence of Rad5's ubiquitin ligase activity. The Rrm3 and Rad5 helicase activities also interact in the prevention of recombinogenic DNA lesions, and DNA lesions that accumulate in their absence need to be salvaged by a Rad59-dependent recombination pathway. Disruption of the structure-specific endonuclease Mus81 leads to accumulation of recombinogenic DNA lesions and chromosomal rearrangements in the absence of Rrm3, but not Rad5. Thus, at least two mechanisms exist to overcome fork stalling at replication barriers, defined by Rad5-mediated fork reversal and Mus81-mediated cleavage, and contribute to the maintenance of chromosome stability in the absence of Rrm3.

摘要

必须监测基因组以确保其准确复制,以防止基因组不稳定。在酿酒酵母中,5' 到 3' DNA 解旋酶 Rrm3 是保守的 PIF1 家族的成员,通过未知的机制促进复制叉的进展。破坏 Rrm3 解旋酶活性会导致整个酵母基因组中复制叉暂停增加。在这里,我们表明 Rrm3 有助于在没有 Rad5 的叉反转活性的情况下耐受复制应激,该活性由其 HIRAN 结构域和 DNA 解旋酶活性定义,但在没有 Rad5 的泛素连接酶活性的情况下则不然。Rrm3 和 Rad5 的解旋酶活性也相互作用以防止重组性 DNA 损伤,并且在它们不存在的情况下需要通过 Rad59 依赖性重组途径来挽救 DNA 损伤。破坏结构特异性内切酶 Mus81 会导致在没有 Rrm3 的情况下积累重组性 DNA 损伤和染色体易位,但没有 Rad5。因此,至少有两种机制可以克服复制障碍处的叉停滞,由 Rad5 介导的叉反转和 Mus81 介导的切割定义,并有助于在没有 Rrm3 的情况下维持染色体稳定性。

相似文献

1
Helicase activities of Rad5 and Rrm3 genetically interact in the prevention of recombinogenic DNA lesions in Saccharomyces cerevisiae.
DNA Repair (Amst). 2023 Jun;126:103488. doi: 10.1016/j.dnarep.2023.103488. Epub 2023 Mar 30.
3
Two Pif1 Family DNA Helicases Cooperate in Centromere Replication and Segregation in .
Genetics. 2019 Jan;211(1):105-119. doi: 10.1534/genetics.118.301710. Epub 2018 Nov 15.
5
Pif1 family helicases promote mutation avoidance during DNA replication.
Nucleic Acids Res. 2022 Dec 9;50(22):12844-12855. doi: 10.1093/nar/gkac1127.
7
Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family.
Genes (Basel). 2020 Feb 20;11(2):224. doi: 10.3390/genes11020224.
8
Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase.
Mol Cell Biol. 2004 Apr;24(8):3213-26. doi: 10.1128/MCB.24.8.3213-3226.2004.
9
The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.
DNA Repair (Amst). 2014 Apr;16:74-83. doi: 10.1016/j.dnarep.2014.02.016. Epub 2014 Mar 13.
10
The Rad5 Helicase and RING Domains Contribute to Genome Stability through their Independent Catalytic Activities.
J Mol Biol. 2022 Mar 15;434(5):167437. doi: 10.1016/j.jmb.2021.167437. Epub 2022 Jan 3.

引用本文的文献

本文引用的文献

1
Rad5 participates in lesion bypass through its Rev1-binding and ubiquitin ligase domains, but not through its helicase function.
Front Mol Biosci. 2022 Dec 1;9:1062027. doi: 10.3389/fmolb.2022.1062027. eCollection 2022.
2
Structural basis for the multi-activity factor Rad5 in replication stress tolerance.
Nat Commun. 2021 Jan 12;12(1):321. doi: 10.1038/s41467-020-20538-w.
3
Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells.
PLoS Genet. 2020 May 29;16(5):e1008816. doi: 10.1371/journal.pgen.1008816. eCollection 2020 May.
4
The Mgs1/WRNIP1 ATPase is required to prevent a recombination salvage pathway at damaged replication forks.
Sci Adv. 2020 Apr 8;6(15):eaaz3327. doi: 10.1126/sciadv.aaz3327. eCollection 2020 Apr.
5
Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family.
Genes (Basel). 2020 Feb 20;11(2):224. doi: 10.3390/genes11020224.
6
Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods.
PLoS One. 2019 Oct 18;14(10):e0223875. doi: 10.1371/journal.pone.0223875. eCollection 2019.
7
Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer.
Crit Rev Biochem Mol Biol. 2019 Jun;54(3):301-332. doi: 10.1080/10409238.2019.1651817. Epub 2019 Aug 20.
8
Rad5 Recruits Error-Prone DNA Polymerases for Mutagenic Repair of ssDNA Gaps on Undamaged Templates.
Mol Cell. 2019 Mar 7;73(5):900-914.e9. doi: 10.1016/j.molcel.2019.01.001. Epub 2019 Feb 4.
10
Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts.
Annu Rev Genet. 2017 Nov 27;51:477-499. doi: 10.1146/annurev-genet-120116-024745.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验