Suppr超能文献

利用旋转移动监测和机器学习方法预测高度动态的交通噪声。

Predicting highly dynamic traffic noise using rotating mobile monitoring and machine learning method.

机构信息

Department of Urban Planning and Landscape, North China University of Technology, Beijing, 100144, China.

School of Architecture, Tsinghua University, Beijing, 100084, China.

出版信息

Environ Res. 2023 Jul 15;229:115896. doi: 10.1016/j.envres.2023.115896. Epub 2023 Apr 11.

Abstract

Traffic noise, characterized by its highly fluctuating nature, is the second biggest environmental problem in the world. Highly dynamic noise maps are indispensable for managing traffic noise pollution, but two key difficulties exist in generating these maps: the lack of large amounts of fine-scale noise monitoring data and the ability to predict noise levels in the absence of noise monitoring data. This study proposed a new noise monitoring method, the Rotating Mobile Monitoring method, that combines the advantages of stationary and mobile monitoring methods and expands the spatial extent and temporal resolution of noise data. A monitoring campaign was conducted in the Haidian District of Beijing, covering 54.79 km of roads and a total area of 22.15 km, and gathered 18,213 A-weighted equivalent noise (LAeq) measurements at 1-s intervals from 152 stationary sampling sites. Additionally, street view images, meteorological data and built environment data were collected from all roads and stationary sites. Using computer vision and GIS analysis tools, 49 predictor variables were measured in four categories, including microscopic traffic composition, street form, land use and meteorology. Six machine learning models and linear regression models were trained to predict LAeq, with random forest performing the best (R = 0.72, RMSE = 3.28 dB), followed by K-nearest neighbors regression (R = 0.66, RMSE = 3.43 dB). The optimal random forest model identified distance to the major road, tree view index, and the maximum field of view index of cars in the last 3 s as the top three contributors. Finally, the model was applied to generate a 9-day traffic noise map of the study area at both the point and street levels. The study is easily replicable and can be extended to a larger spatial scale to obtain highly dynamic noise maps.

摘要

交通噪声具有高度波动的特点,是世界上第二大环境问题。生成高度动态的噪声地图对于管理交通噪声污染至关重要,但在生成这些地图时存在两个关键难点:缺乏大量精细尺度的噪声监测数据,以及在没有噪声监测数据的情况下预测噪声水平的能力。本研究提出了一种新的噪声监测方法,即旋转移动监测方法,它结合了固定监测和移动监测方法的优点,扩展了噪声数据的空间范围和时间分辨率。在北京海淀区进行了一项监测活动,覆盖了 54.79 公里的道路和 22.15 平方公里的总面积,从 152 个固定采样点以 1 秒的间隔采集了 18213 个 A 加权等效噪声(LAeq)测量值。此外,从所有道路和固定站点收集了街景图像、气象数据和建筑环境数据。使用计算机视觉和 GIS 分析工具,从四个类别测量了 49 个预测变量,包括微观交通组成、街道形态、土地利用和气象。训练了六个机器学习模型和线性回归模型来预测 LAeq,随机森林表现最好(R=0.72,RMSE=3.28dB),其次是 K-最近邻回归(R=0.66,RMSE=3.43dB)。最佳随机森林模型确定了距离主要道路、树木视野指数和过去 3 秒内汽车的最大视野指数的距离,这三个指标是贡献最大的三个指标。最后,该模型应用于生成研究区域的点和街道级别的 9 天交通噪声地图。该研究易于复制,可以扩展到更大的空间范围以获得高度动态的噪声地图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验