文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一项使用循环免疫细胞参数预测脓毒症患者急性呼吸窘迫综合征风险的机器学习模型:一项回顾性研究。

A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study.

作者信息

Zhou Kaihuan, Qin Lian, Chen Yin, Gao Hanming, Ling Yicong, Qin Qianqian, Mou Chenglin, Qin Tao, Lu Junyu

机构信息

Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.

出版信息

BMC Infect Dis. 2025 Apr 21;25(1):568. doi: 10.1186/s12879-025-10974-8.


DOI:10.1186/s12879-025-10974-8
PMID:40259224
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12013033/
Abstract

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication associated with a high mortality rate in patients with sepsis. Early identification of patients with sepsis at high risk of developing ARDS is crucial for timely intervention, optimization of treatment strategies, and improvement of clinical outcomes. However, traditional risk prediction methods are often insufficient. This study aimed to develop a machine learning (ML) model to predict the risk of ARDS in patients with sepsis using circulating immune cell parameters and other physiological data. METHODS: Clinical data from 10,559 patients with sepsis were obtained from the MIMIC-IV database. Principal component analysis (PCA) was used for dimensionality reduction and to comprehensively evaluate the models' predictive capabilities, we used several ML algorithms, including decision trees, k-nearest neighbors (KNN), logistic regression, naive Bayes, random forests, neural networks, XGBoost, and support vector machines (SVM) to predict ARDS risk. The model performance was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score. Shapley additive explanations (SHAP) were used to interpret the contribution of individual features to model predictions. RESULTS: Among all models, XGBoost showed the best performance with an AUC of 0.764. Feature importance analysis revealed that mean arterial pressure, monocyte count, neutrophil count, pH, and platelet count were key predictors of ARDS risk in patients with sepsis. The SHAP analysis provided further information on how these features contributed to the model's predictions, aiding in interpretability and potential clinical applications. CONCLUSION: The XGBoost model using circulating immune cell parameters accurately predicted the risk of ARDS in patients with sepsis. This model could be a useful tool for the early identification of high-risk patients and timely intervention; however, further validation and integration into clinical practice are required.

摘要

背景:急性呼吸窘迫综合征(ARDS)是脓毒症患者的一种严重并发症,死亡率很高。早期识别有发生ARDS高风险的脓毒症患者对于及时干预、优化治疗策略和改善临床结局至关重要。然而,传统的风险预测方法往往不够充分。本研究旨在开发一种机器学习(ML)模型,利用循环免疫细胞参数和其他生理数据预测脓毒症患者发生ARDS的风险。 方法:从MIMIC-IV数据库中获取10559例脓毒症患者的临床数据。主成分分析(PCA)用于降维,为全面评估模型的预测能力,我们使用了几种ML算法,包括决策树、k近邻(KNN)、逻辑回归、朴素贝叶斯、随机森林、神经网络、XGBoost和支持向量机(SVM)来预测ARDS风险。使用受试者工作特征曲线下面积(AUC)、准确性、敏感性、特异性和F1分数评估模型性能。使用夏普利加性解释(SHAP)来解释个体特征对模型预测的贡献。 结果:在所有模型中,XGBoost表现最佳,AUC为0.764。特征重要性分析显示,平均动脉压、单核细胞计数、中性粒细胞计数、pH值和血小板计数是脓毒症患者发生ARDS风险的关键预测因素。SHAP分析提供了关于这些特征如何对模型预测做出贡献的进一步信息,有助于解释和潜在的临床应用。 结论:使用循环免疫细胞参数的XGBoost模型准确预测了脓毒症患者发生ARDS的风险。该模型可能是早期识别高危患者和及时干预的有用工具;然而,需要进一步验证并整合到临床实践中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/2bdd37ecde66/12879_2025_10974_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/e66d1c61b3f8/12879_2025_10974_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/8cfb0225cf81/12879_2025_10974_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/c4a4d37f2c11/12879_2025_10974_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/200af349afca/12879_2025_10974_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/272ffed6e27e/12879_2025_10974_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/d0a2d788364a/12879_2025_10974_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/2bdd37ecde66/12879_2025_10974_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/e66d1c61b3f8/12879_2025_10974_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/8cfb0225cf81/12879_2025_10974_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/c4a4d37f2c11/12879_2025_10974_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/200af349afca/12879_2025_10974_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/272ffed6e27e/12879_2025_10974_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/d0a2d788364a/12879_2025_10974_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb3/12013033/2bdd37ecde66/12879_2025_10974_Fig7_HTML.jpg

相似文献

[1]
A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study.

BMC Infect Dis. 2025-4-21

[2]
Machine learning for the early prediction of acute respiratory distress syndrome (ARDS) in patients with sepsis in the ICU based on clinical data.

Heliyon. 2024-3-13

[3]
Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU.

Int J Med Inform. 2025-6

[4]
Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database.

J Intensive Care Med. 2025-3

[5]
Tree-based ensemble machine learning models in the prediction of acute respiratory distress syndrome following cardiac surgery: a multicenter cohort study.

J Transl Med. 2024-8-15

[6]
Early prediction of sepsis associated encephalopathy in elderly ICU patients using machine learning models: a retrospective study based on the MIMIC-IV database.

Front Cell Infect Microbiol. 2025-4-17

[7]
An interpreting machine learning models to predict amputation risk in patients with diabetic foot ulcers: a multi-center study.

Front Endocrinol (Lausanne). 2025-3-25

[8]
Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

Sci Rep. 2025-4-18

[9]
Prediction of sepsis mortality in ICU patients using machine learning methods.

BMC Med Inform Decis Mak. 2024-8-16

[10]
MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME.

Shock. 2023-3-1

引用本文的文献

[1]
Predicting 30-day in-hospital mortality in ICU asthma patients: a retrospective machine learning study with external validation.

BMC Pulm Med. 2025-8-12

本文引用的文献

[1]
Machine Learning Models in Sepsis Outcome Prediction for ICU Patients: Integrating Routine Laboratory Tests-A Systematic Review.

Biomedicines. 2024-12-19

[2]
Machine learning derivation of two cardiac arrest subphenotypes with distinct responses to treatment.

J Transl Med. 2025-1-6

[3]
Association between red blood cell distribution width and mortality in severe osteomyelitis patients.

Sci Rep. 2025-1-2

[4]
A novel method to predict white blood cells after kidney transplantation based on machine learning.

Digit Health. 2024-10-21

[5]
Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database.

J Intensive Care Med. 2025-3

[6]
Development and validation of a deep learning-based framework for automated lung CT segmentation and acute respiratory distress syndrome prediction: a multicenter cohort study.

EClinicalMedicine. 2024-7-26

[7]
Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction.

Crit Care Med. 2024-11-1

[8]
The value of five scoring systems in predicting the prognosis of patients with sepsis-associated acute respiratory failure.

Sci Rep. 2024-2-27

[9]
Development of a predictive nomogram for acute respiratory distress syndrome in patients with acute pancreatitis complicated with acute kidney injury.

Ren Fail. 2023

[10]
Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study.

Crit Care Med. 2023-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索