Suppr超能文献

使用人工智能乳腺超声系统开发和评估乳腺癌术后复发和转移的预测模型

Development and evaluation of a predictive model for postoperative recurrence and metastasis in breast cancer using an artificial intelligence ultrasound breast system.

作者信息

Cheng Xiuli, Shen Lili, Tang Xinyu, Ma Fang

机构信息

Department of Ultrasound Medicine, The Second People's Hospital of Hefei Hefei 230011, Anhui, China.

出版信息

Am J Transl Res. 2025 May 15;17(5):4038-4053. doi: 10.62347/MECC4748. eCollection 2025.

Abstract

OBJECTIVE

To assess the feasibility and efficacy of developing a predictive model for postoperative recurrence and metastasis in breast cancer using the Artificial Intelligence Ultrasound Breast System (AIUBS).

METHODS

A retrospective study was conducted with 120 breast cancer patients who underwent surgery between January 2022 and December 2023. Patients were divided into two groups based on postoperative outcomes: recurrence/metastasis (n = 58) and non-recurrence/non-metastasis (n = 62). Logistic regression was used to identify independent predictors, and a nomogram model was constructed. Model performance was assessed using Receiver Operating Characteristic curves, calibration curves, and decision curve analysis (DCA). The optimal cutoff value was determined through confusion matrix analysis.

RESULTS

Univariate analysis identified lymph node metastasis (OR = 8.17, 95% CI: 3.51-18.99), estrogen receptor (ER) status (OR = 0.46, 95% CI: 0.21-0.99), and human epidermal growth factor receptor 2 status (OR = 5.32, 95% CI: 2.32-12.22) as significant predictors. Multivariate analysis confirmed lymph node metastasis (OR = 8.81, 95% CI: 3.68-21.07) and ER status (OR = 0.39, 95% CI: 0.16-0.94) as independent predictors. The nomogram model demonstrated an Area Under the Curve of 0.77 (95% CI: 0.68-0.85). The optimal cutoff value, derived from confusion matrix analysis, was 0.572, confirming the model's clinical utility.

CONCLUSION

The AIUBS-based predictive model for postoperative recurrence and metastasis in breast cancer demonstrates high predictive accuracy and clinical utility, providing valuable support for personalized treatment and follow-up decisions.

摘要

目的

评估使用人工智能乳腺超声系统(AIUBS)开发乳腺癌术后复发和转移预测模型的可行性和有效性。

方法

对2022年1月至2023年12月期间接受手术的120例乳腺癌患者进行回顾性研究。根据术后结果将患者分为两组:复发/转移组(n = 58)和无复发/无转移组(n = 62)。采用逻辑回归确定独立预测因素,并构建列线图模型。使用受试者工作特征曲线、校准曲线和决策曲线分析(DCA)评估模型性能。通过混淆矩阵分析确定最佳截断值。

结果

单因素分析确定淋巴结转移(OR = 8.17,95%CI:3.51 - 18.99)、雌激素受体(ER)状态(OR = 0.46,95%CI:0.21 - 0.99)和人表皮生长因子受体2状态(OR = 5.32,95%CI:2.32 - 12.22)为显著预测因素。多因素分析确认淋巴结转移(OR = 8.81,95%CI:3.68 - 21.07)和ER状态(OR = 0.39,95%CI:0.16 - 0.94)为独立预测因素。列线图模型的曲线下面积为0.77(95%CI:0.68 - 0.85)。通过混淆矩阵分析得出的最佳截断值为0.572,证实了该模型的临床实用性。

结论

基于AIUBS的乳腺癌术后复发和转移预测模型具有较高的预测准确性和临床实用性,为个性化治疗和随访决策提供了有价值的支持。

相似文献

本文引用的文献

6
Artificial intelligence in breast imaging: Current situation and clinical challenges.乳腺成像中的人工智能:现状与临床挑战
Exploration (Beijing). 2023 Jul 20;3(5):20230007. doi: 10.1002/EXP.20230007. eCollection 2023 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验