Suppr超能文献

超越准确性的反馈:利用眼动追踪技术检测阅读过程中的可理解性和兴趣度。

Feedback beyond accuracy: Using eye-tracking to detect comprehensibility and interest during reading.

作者信息

van der Sluis Frans, van den Broek Egon L

机构信息

Department of Communication University of Copenhagen Copenhagen Denmark.

Department of Information and Computing Sciences Utrecht University Utrecht the Netherlands.

出版信息

J Assoc Inf Sci Technol. 2023 Jan;74(1):3-16. doi: 10.1002/asi.24657. Epub 2022 May 24.

Abstract

Knowing what information a user wants is a paramount challenge to information science and technology. Implicit feedback is key to solving this challenge, as it allows information systems to learn about a user's needs and preferences. The available feedback, however, tends to be limited and its interpretation shows to be difficult. To tackle this challenge, we present a user study that explores whether tracking the eyes can unpack part of the complexity inherent to relevance and relevance decisions. The eye behavior of 30 participants reading 18 news articles was compared with their subjectively appraised comprehensibility and interest at a discourse level. Using linear regression models, the eye-tracking signal explained 49.93% (comprehensibility) and 30.41% (interest) of variance ( < .001). We conclude that eye behavior provides implicit feedback beyond accuracy that enables new forms of adaptation and interaction support for personalized information systems.

摘要

了解用户想要什么信息是信息科学技术面临的一项至关重要的挑战。隐式反馈是解决这一挑战的关键,因为它能让信息系统了解用户的需求和偏好。然而,可用的反馈往往有限,而且对其进行解读也很困难。为应对这一挑战,我们开展了一项用户研究,探讨跟踪眼睛是否能够解开相关性及相关性决策中固有的部分复杂性。将30名阅读18篇新闻文章的参与者的眼睛行为,与他们在语篇层面主观评估的可理解性和兴趣度进行了比较。使用线性回归模型,眼动追踪信号解释了49.93%(可理解性)和30.41%(兴趣度)的方差(<0.001)。我们得出结论,眼睛行为提供了超越准确性的隐式反馈,可为个性化信息系统带来新形式的自适应和交互支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5b/10084433/957d688b2b7b/ASI-74-3-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验