Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China.
ACS Appl Mater Interfaces. 2023 Apr 26;15(16):19976-19988. doi: 10.1021/acsami.3c01139. Epub 2023 Apr 14.
Therapeutic bioengineering based on stem cell therapy holds great promise in biomedical applications. However, the application of this treatment is limited in orthopedics because of their poor survival, weak localization, and low cell retention. In this work, magneto-mechanical bioengineered cells consisting of magnetic silica nanoparticles (MSNPs) and mesenchymal stem cells (MSCs) are prepared to alleviate osteoporosis. The magneto-mechanical bioengineered MSCs with spatial localization, cell retention, and directional tracking capabilities could be mediated by a guided magnetic field (MF) and . Furthermore, high uptake rates of the MSNPs ensure the efficient construction of magnetically controlled MSCs within 2 h. In conjunction with external MF, the magneto-mechanical bioengineered MSCs have the potential for the activation of the YAP/β-catenin signaling pathway, which could further promote osteogenesis, mineralization, and angiogenesis. The synergistic effects of MSNPs and guided MF could also decline bone resorption to rebalance bone metabolism in bone loss diseases. experiments confirm that the functional MSCs and guided MF could effectively alleviate postmenopausal osteoporosis, and the bone mass of the treated osteoporotic bones by using the bioengineered cells for 6 weeks is nearly identical to that of the healthy ones. Our results provide a new avenue for osteoporosis management and treatment, which contribute to the future advancement of magneto-mechanical bioengineering and treatment.
基于干细胞治疗的治疗性生物工程在生物医学应用中具有巨大的潜力。然而,由于其生存能力差、定位能力弱和细胞保留率低,这种治疗方法在骨科中的应用受到限制。在这项工作中,制备了由磁性硅纳米颗粒 (MSNPs) 和间充质干细胞 (MSCs) 组成的磁机械生物工程细胞,以缓解骨质疏松症。具有空间定位、细胞保留和定向跟踪能力的磁机械生物工程 MSC 可以通过导向磁场 (MF) 和 进行介导。此外,MSNPs 的高摄取率可确保在 2 小时内高效构建受磁场控制的 MSC。与外部 MF 结合,磁机械生物工程 MSC 具有激活 YAP/β-连环蛋白信号通路的潜力,从而进一步促进成骨、矿化和血管生成。MSNPs 和导向 MF 的协同作用还可以减少骨吸收,以重新平衡骨质疏松症等骨丢失疾病中的骨代谢。 实验证实,功能化的 MSC 和导向 MF 可有效缓解绝经后骨质疏松症,并且使用生物工程细胞治疗 6 周后的骨质疏松骨的骨量几乎与健康骨相同。我们的研究结果为骨质疏松症的管理和治疗提供了新的途径,为磁机械生物工程和治疗的未来发展做出了贡献。
ACS Appl Mater Interfaces. 2023-4-26
Mater Sci Eng C Mater Biol Appl. 2020-1-7
Int J Nanomedicine. 2020-10-15
Int J Nanomedicine. 2025-6-20
Research (Wash D C). 2025-5-22
Int J Mol Sci. 2024-2-28