Suppr超能文献

基于 DNA 的计算的实际潜力的分子评估。

A molecular assessment of the practical potential of DNA-based computation.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27606, USA.

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA.

出版信息

Curr Opin Biotechnol. 2023 Jun;81:102940. doi: 10.1016/j.copbio.2023.102940. Epub 2023 Apr 13.

Abstract

The immense information density of DNA and its potential for massively parallelized computations, paired with rapidly expanding data production and storage needs, have fueled a renewed interest in DNA-based computation. Since the construction of the first DNA computing systems in the 1990s, the field has grown to encompass a diverse array of configurations. Simple enzymatic and hybridization reactions to solve small combinatorial problems transitioned to synthetic circuits mimicking gene regulatory networks and DNA-only logic circuits based on strand displacement cascades. These have formed the foundations of neural networks and diagnostic tools that aim to bring molecular computation to practical scales and applications. Considering these great leaps in system complexity as well as in the tools and technologies enabling them, a reassessment of the potential of such DNA computing systems is warranted.

摘要

DNA 具有巨大的信息密度和潜在的大规模并行计算能力,再加上数据生产和存储需求的迅速增长,这激发了人们对基于 DNA 的计算的重新兴趣。自上世纪 90 年代构建第一个 DNA 计算系统以来,该领域已经发展到包含各种不同的结构。从简单的酶促和杂交反应来解决小的组合问题,到模拟基因调控网络的合成电路,以及基于链置换级联的 DNA 逻辑电路,这些都为神经网络和诊断工具奠定了基础,旨在将分子计算应用于实际规模和应用中。考虑到系统复杂性以及支持它们的工具和技术的巨大飞跃,有必要重新评估这种 DNA 计算系统的潜力。

相似文献

1
A molecular assessment of the practical potential of DNA-based computation.
Curr Opin Biotechnol. 2023 Jun;81:102940. doi: 10.1016/j.copbio.2023.102940. Epub 2023 Apr 13.
2
Nucleic Acid Databases and Molecular-Scale Computing.
ACS Nano. 2019 Jun 25;13(6):6256-6268. doi: 10.1021/acsnano.9b02562. Epub 2019 May 24.
3
Massively Parallel DNA Computing Based on Domino DNA Strand Displacement Logic Gates.
ACS Synth Biol. 2022 Jul 15;11(7):2504-2512. doi: 10.1021/acssynbio.2c00270. Epub 2022 Jun 30.
4
Exponential Function Computation Based on DNA Strand Displacement Circuits.
IEEE Trans Biomed Circuits Syst. 2022 Jun;16(3):479-488. doi: 10.1109/TBCAS.2022.3184760. Epub 2022 Jul 12.
5
Scaling up digital circuit computation with DNA strand displacement cascades.
Science. 2011 Jun 3;332(6034):1196-201. doi: 10.1126/science.1200520.
6
Computing mathematical functions with chemical reactions via stochastic logic.
PLoS One. 2023 May 8;18(5):e0281574. doi: 10.1371/journal.pone.0281574. eCollection 2023.
7
Programmable DNA Nanoindicator-Based Platform for Large-Scale Square Root Logic Biocomputing.
Small. 2019 Dec;15(49):e1903489. doi: 10.1002/smll.201903489. Epub 2019 Oct 29.
8
Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase.
Nat Nanotechnol. 2019 Nov;14(11):1075-1081. doi: 10.1038/s41565-019-0544-5. Epub 2019 Sep 23.
9
DNA Strand-Displacement Temporal Logic Circuits.
J Am Chem Soc. 2022 Jul 13;144(27):12443-12449. doi: 10.1021/jacs.2c04325. Epub 2022 Jul 2.
10
DNA computation in mammalian cells: microRNA logic operations.
J Am Chem Soc. 2013 Jul 17;135(28):10512-8. doi: 10.1021/ja404350s. Epub 2013 Jul 9.

引用本文的文献

1
A primordial DNA store and compute engine.
Nat Nanotechnol. 2024 Nov;19(11):1654-1664. doi: 10.1038/s41565-024-01771-6. Epub 2024 Aug 22.

本文引用的文献

1
Nonlinear decision-making with enzymatic neural networks.
Nature. 2022 Oct;610(7932):496-501. doi: 10.1038/s41586-022-05218-7. Epub 2022 Oct 19.
2
Emerging Approaches to DNA Data Storage: Challenges and Prospects.
ACS Nano. 2022 Nov 22;16(11):17552-17571. doi: 10.1021/acsnano.2c06748. Epub 2022 Oct 18.
3
DNA Strand-Displacement Temporal Logic Circuits.
J Am Chem Soc. 2022 Jul 13;144(27):12443-12449. doi: 10.1021/jacs.2c04325. Epub 2022 Jul 2.
4
Synthetic DNA applications in information technology.
Nat Commun. 2022 Jan 17;13(1):352. doi: 10.1038/s41467-021-27846-9.
5
Dynamic and scalable DNA-based information storage.
Nat Commun. 2020 Jun 12;11(1):2981. doi: 10.1038/s41467-020-16797-2.
6
Cancer diagnosis with DNA molecular computation.
Nat Nanotechnol. 2020 Aug;15(8):709-715. doi: 10.1038/s41565-020-0699-0. Epub 2020 May 25.
7
Implementing digital computing with DNA-based switching circuits.
Nat Commun. 2020 Jan 8;11(1):121. doi: 10.1038/s41467-019-13980-y.
8
Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase.
Nat Nanotechnol. 2019 Nov;14(11):1075-1081. doi: 10.1038/s41565-019-0544-5. Epub 2019 Sep 23.
9
Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature. 2019 Mar;567(7748):366-372. doi: 10.1038/s41586-019-1014-9. Epub 2019 Mar 20.
10
Accelerating DNA-Based Computing on a Supramolecular Polymer.
J Am Chem Soc. 2018 Aug 1;140(30):9758-9767. doi: 10.1021/jacs.8b06146. Epub 2018 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验