Suppr超能文献

基于弱监督深度学习的全局标签对结直肠癌的组织病理学分类和定位。

Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning.

机构信息

School of Science, China Pharmaceutical University, Nanjing, China.

School of Science, China Pharmaceutical University, Nanjing, China; Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, Singapore.

出版信息

Comput Med Imaging Graph. 2021 Mar;88:101861. doi: 10.1016/j.compmedimag.2021.101861. Epub 2021 Jan 13.

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. In coping with it, histopathology image analysis (HIA) provides key information for clinical diagnosis of CRC. Nowadays, the deep learning methods are widely used in improving cancer classification and localization of tumor-regions in HIA. However, these efforts are both time-consuming and labor-intensive due to the manual annotation of tumor-regions in the whole slide images (WSIs). Furthermore, classical deep learning methods to analyze thousands of patches extracted from WSIs may cause loss of integrated information of image. Herein, a novel method was developed, which used only global labels to achieve WSI classification and localization of carcinoma by combining features from different magnifications of WSIs. The model was trained and tested using 1346 colorectal cancer WSIs from the Cancer Genome Atlas (TCGA). Our method classified colorectal cancer with an accuracy of 94.6 %, which slightly outperforms most of the existing methods. Its cancerous-location probability maps were in good agreement with annotations from three individual expert pathologists. Independent tests on 50 newly-collected colorectal cancer WSIs from hospitals produced 92.0 % accuracy and cancerous-location probability maps were in good agreement with the three pathologists. The results thereby demonstrated that the method sufficiently achieved WSI classification and localization utilizing only global labels. This weakly supervised deep learning method is effective in time and cost, as it delivered a better performance in comparison with the state-of-the-art methods.

摘要

结直肠癌(CRC)是全球癌症相关死亡的第二大主要原因。在应对结直肠癌时,组织病理学图像分析(HIA)为 CRC 的临床诊断提供了关键信息。如今,深度学习方法被广泛用于提高癌症分类和肿瘤区域定位的准确性。然而,由于全切片图像(WSI)中肿瘤区域的手动标注,这些工作既耗时又费力。此外,经典的深度学习方法分析从 WSI 中提取的数千个斑块可能会导致图像整体信息的丢失。在此,我们开发了一种新方法,该方法仅使用全局标签,通过结合不同放大倍数的 WSI 的特征,实现了 WSI 的分类和癌区域的定位。该模型使用来自癌症基因组图谱(TCGA)的 1346 张结直肠癌 WSI 进行了训练和测试。我们的方法对结直肠癌的分类准确率为 94.6%,略优于大多数现有方法。其癌区域概率图与三位独立病理学家的注释具有很好的一致性。对来自医院的 50 张新收集的结直肠癌 WSI 的独立测试产生了 92.0%的准确率,并且癌区域概率图与三位病理学家的结果具有很好的一致性。结果表明,该方法仅使用全局标签即可充分实现 WSI 的分类和定位。与最先进的方法相比,这种弱监督深度学习方法在时间和成本上更有效,性能也更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验