Suppr超能文献

肥胖人群特征分析:葡萄牙北部真实世界数据的回顾性纵向研究。

Characterization of an obese population: a retrospective longitudinal study from real-world data in northern Portugal.

机构信息

Faculty of Medicine, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), University of Porto, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal.

University of Porto, Centre for Health Technology and Services Research (CINTESIS), Porto, Portugal.

出版信息

BMC Prim Care. 2023 Apr 15;24(1):99. doi: 10.1186/s12875-023-02023-7.

Abstract

BACKGROUND

Obesity is a serious and largely preventable global health problem. Obesity-related electronic health records can be a useful resource to identify and address obesity. The analysis of real-world data from T82-coded (International Classification of Primary Care coding, for obesity) primary care individuals can be an excellent national source of data on obesity's prevalence, characteristics, and impact on the National Health Service.

METHODS

Retrospective longitudinal study, based on a database of electronic medical records, from the Regional Health Administration of northern Portugal. The study objectives were to determine the prevalence of obesity and to characterize an adult obese population in northern Portugal from a bio-demographic point of view along with profiles of comorbidities and the use of health resources. This study used a database of 266,872 patients in December 2019 and screened for diagnostic code T82 from the International Classification of Primary Care.

RESULTS

The prevalence of obesity was 10.2% and the highest prevalence of obesity was in the 65-74 age group (16.1%). The most prevalent morbidities in patients with obesity as coded through ICPC-2 were K86 (uncomplicated hypertension), T90 (non-insulin-dependent diabetes), and K87 (complicated hypertension). Descriptive information showed that T82 subjects used more consultations, medications, and diagnostic tests than non-T82 subjects.

CONCLUSIONS

Routine recording of weight and height deserves special attention to allow obesity recognition at an early stage and move on to the appropriate intervention. Future work is necessary to automate the codification of obesity for subjects under 18 years of age, to raise awareness and anticipate the prevention of problems associated with obesity. Practical strategies need to be implemented, such as the creation of a specific program consultation with truly targeted approaches to obesity.

摘要

背景

肥胖是一个严重且在很大程度上可预防的全球健康问题。与肥胖相关的电子健康记录可以成为识别和解决肥胖问题的有用资源。对 T82 编码(初级保健国际分类编码,用于肥胖)初级保健个体的真实世界数据进行分析,可以成为了解肥胖流行率、特征以及肥胖对国民健康服务影响的极好的国家数据源。

方法

这是一项基于葡萄牙北部地区卫生署电子病历数据库的回顾性纵向研究。本研究的目的是确定肥胖的流行率,并从生物人口统计学角度对葡萄牙北部的成年肥胖人群进行特征描述,包括共病谱和卫生资源的使用情况。本研究使用了 2019 年 12 月 266872 名患者的数据库,并对初级保健国际分类的 T82 诊断代码进行了筛查。

结果

肥胖的流行率为 10.2%,肥胖的最高流行率出现在 65-74 岁年龄组(16.1%)。在通过国际疾病分类-2 编码为肥胖的患者中,最常见的共病为 K86(单纯性高血压)、T90(非胰岛素依赖型糖尿病)和 K87(复杂性高血压)。描述性信息显示,T82 患者比非 T82 患者使用了更多的咨询、药物和诊断测试。

结论

应特别关注体重和身高的常规记录,以便在早期识别肥胖并采取适当的干预措施。需要进一步开展工作,以实现对 18 岁以下人群肥胖的自动编码,提高认识并预防与肥胖相关的问题。需要实施切实可行的策略,如创建一个专门的咨询项目,以真正针对肥胖问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40f2/10105387/890d12ca245c/12875_2023_2023_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验