Almklov Erin, Cohen Alicia J, Russell Lauren E, Mor Maria K, Fine Michael J, Hausmann Leslie R M, Moy Ernest, Washington Donna L, Jones Kenneth T, Long Judith A, Pittman James
VA Center of Excellence for Stress and Mental Health, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
JAMIA Open. 2023 Apr 12;6(2):ooad020. doi: 10.1093/jamiaopen/ooad020. eCollection 2023 Jul.
Evaluate self-reported electronic screening () in a VA Transition Care Management Program (TCM) to improve the accuracy and completeness of administrative ethnicity and race data.
We compared missing, declined, and complete (neither missing nor declined) rates between (1) (ethnicity and race entered into electronic tablet directly by patient using eScreening), (2) (Veteran-completed paper form plus interview, data entered by staff), and (3) (multiple processes, data entered by staff). The TCM-eScreening ( = 7113) and TCM-EHR groups ( = 7113) included post-9/11 Veterans. Standard-EHR Veterans included all non-TCM Gulf War and post-9/11 Veterans at VA San Diego ( = 92 921).
: TCM-eScreening had lower rates of missingness than TCM-EHR and Standard-EHR (3.0% vs 5.3% and 8.6%, respectively, < .05), but higher rates of "decline to answer" (7% vs 0.5% and 1.2%, < .05). TCM-EHR had higher data completeness than TCM-eScreening and Standard-EHR (94.2% vs 90% and 90.2%, respectively, < .05). : No differences between TCM-eScreening and TCM-EHR for missingness (3.5% vs 3.4%, > .05) or data completeness (89.9% vs 91%, > .05). Both had better data completeness than Standard-EHR ( < .05), which despite the lowest rate of "decline to answer" (3%) had the highest missingness (10.3%) and lowest overall completeness (86.6%). There was strong agreement between TCM-eScreening and TCM-EHR for ethnicity (Kappa = .92) and for Asian, Black, and White Veteran race (Kappas = .87 to .97), but lower agreement for American Indian/Alaska Native (Kappa = .59) and Native Hawaiian/Other Pacific Islander (Kappa = .50) Veterans.
eScreening is a promising method for improving ethnicity and race data accuracy and completeness in VA.
评估退伍军人事务部(VA)过渡护理管理计划(TCM)中自我报告的电子筛查情况,以提高行政种族和族裔数据的准确性和完整性。
我们比较了以下三种情况的缺失、拒绝和完整(既无缺失也无拒绝)率:(1)电子筛查(患者使用电子筛查直接在电子平板电脑上输入种族和族裔信息),(2)传统方式(退伍军人填写纸质表格并接受访谈,工作人员输入数据),以及(3)多种流程方式(工作人员输入数据)。TCM电子筛查组(n = 7113)和TCM电子健康记录组(n = 7113)包括9·11事件后的退伍军人。标准电子健康记录组的退伍军人包括VA圣地亚哥所有非TCM的海湾战争退伍军人及9·11事件后的退伍军人(n = 92921)。
:TCM电子筛查的缺失率低于TCM电子健康记录组和标准电子健康记录组(分别为3.0%、5.3%和8.6%,P <.05),但“拒绝回答”率更高(分别为7%、0.5%和1.2%,P <.05)。TCM电子健康记录组的数据完整性高于TCM电子筛查组和标准电子健康记录组(分别为94.2%、90%和90.2%,P <.05)。:TCM电子筛查和TCM电子健康记录组在缺失率(分别为3.5%和3.4%,P >.05)或数据完整性方面(分别为89.9%和91%,P >.05)无差异。两者的数据完整性均优于标准电子健康记录组(P <.05),标准电子健康记录组尽管“拒绝回答”率最低(3%),但其缺失率最高(10.3%),总体完整性最低(86.6%)。TCM电子筛查和TCM电子健康记录组在族裔方面一致性较强(卡帕系数 = 0.92),在亚洲、黑人和白人退伍军人种族方面一致性也较强(卡帕系数 = 0.87至0.97),但在美洲印第安人/阿拉斯加原住民(卡帕系数 = 0.59)和夏威夷原住民/其他太平洋岛民退伍军人(卡帕系数 = 0.50)方面一致性较低。
电子筛查是提高VA种族和族裔数据准确性和完整性的一种有前景的方法。