Suppr超能文献

电动镊子

Electric Tweezers.

作者信息

Fan D L, Zhu F Q, Cammarata R C, Chien C L

机构信息

Materials Science and Engineering Program, Texas Materials Institute, Center of Nano and Molecular Science and Technology, and Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78759.

Hitachi Global Storage Technology, San Jose, CA 95135.

出版信息

Nano Today. 2011 Aug;6(4):339-354. doi: 10.1016/j.nantod.2011.05.003. Epub 2011 Jul 12.

Abstract

Electric tweezers utilize DC and AC electric fields through voltages applied on patterned electrodes to manipulate nanoentities suspended in a liquid. Nanowires with a large aspect ratio are particularly suitable for use in electric tweezers for patterning, assembling, and manipulation. Despite operating in the regime of extremely small particle Reynolds number (of order 10), electric tweezers can manipulate nanowires with high precision to follow any prescribed trajectory, to rotate nanowires with controlled chirality, angular velocity and rotation angle, and to assemble nanowires to fabricate nanoelectromechanical system (NEMS) devices such as nanomotors and nano-oscillators. Electric tweezers have also been used to transport in a highly controlled manner drug-carrying functionalized nanowires for cell-specific drug delivery.

摘要

电镊子通过施加在图案化电极上的电压利用直流和交流电场来操纵悬浮在液体中的纳米实体。具有大纵横比的纳米线特别适合用于电镊子进行图案化、组装和操纵。尽管在极小的颗粒雷诺数(约为10) regime下运行,但电镊子可以高精度地操纵纳米线,使其遵循任何规定的轨迹,以受控的手性、角速度和旋转角度旋转纳米线,并组装纳米线以制造纳米机电系统(NEMS)设备,如纳米马达和纳米振荡器。电镊子还被用于以高度可控的方式运输载药功能化纳米线,用于细胞特异性药物递送。

相似文献

1
Electric Tweezers.
Nano Today. 2011 Aug;6(4):339-354. doi: 10.1016/j.nantod.2011.05.003. Epub 2011 Jul 12.
3
Micromotors with step-motor characteristics by controlled magnetic interactions among assembled components.
ACS Nano. 2015 Jan 27;9(1):548-54. doi: 10.1021/nn505798w. Epub 2014 Dec 31.
5
Visible light-gated reconfigurable rotary actuation of electric nanomotors.
Sci Adv. 2018 Sep 14;4(9):eaau0981. doi: 10.1126/sciadv.aau0981. eCollection 2018 Sep.
6
Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents.
Recent Pat Nanotechnol. 2016;10(1):44-58. doi: 10.2174/187221051001160322155420.
7
Biobased High-Performance Rotary Micromotors for Individually Reconfigurable Micromachine Arrays and Microfluidic Applications.
ACS Appl Mater Interfaces. 2017 Feb 22;9(7):6144-6152. doi: 10.1021/acsami.6b13997. Epub 2017 Feb 7.
8
Automated characterization and assembly of individual nanowires for device fabrication.
Lab Chip. 2018 May 15;18(10):1494-1503. doi: 10.1039/c8lc00051d.
9
Innovative mechanisms for precision assembly and actuation of arrays of nanowire oscillators.
ACS Nano. 2013 Apr 23;7(4):3476-83. doi: 10.1021/nn400363x. Epub 2013 Mar 20.
10
Manipulation and assembly of ZnO nanowires with single holographic optical tweezers system.
Appl Opt. 2014 Jan 20;53(3):351-5. doi: 10.1364/AO.53.000351.

引用本文的文献

1
Technology Roadmap of Micro/Nanorobots.
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
2
SERS-Active Micro/Nanomachines for Biosensing.
Biosensors (Basel). 2025 Feb 16;15(2):115. doi: 10.3390/bios15020115.
3
Photopyroelectric tweezers for versatile manipulation.
Innovation (Camb). 2024 Dec 12;6(1):100742. doi: 10.1016/j.xinn.2024.100742. eCollection 2025 Jan 6.
4
Capillary wave tweezer.
Sci Rep. 2024 May 30;14(1):12448. doi: 10.1038/s41598-024-63154-0.
5
One-step formation of three-dimensional interconnected T-shaped microstructures inside composites by orthogonal bidirectional self-assembly method.
Sci Technol Adv Mater. 2024 Feb 5;25(1):2313957. doi: 10.1080/14686996.2024.2313957. eCollection 2024.
6
Current status and future application of electrically controlled micro/nanorobots in biomedicine.
Front Bioeng Biotechnol. 2024 Jan 19;12:1353660. doi: 10.3389/fbioe.2024.1353660. eCollection 2024.
7
Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances.
Micromachines (Basel). 2023 Jul 25;14(8):1487. doi: 10.3390/mi14081487.
8
Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review.
Micromachines (Basel). 2022 Nov 16;13(11):1987. doi: 10.3390/mi13111987.
9
Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications.
ACS Nano. 2022 Nov 22;16(11):17641-17686. doi: 10.1021/acsnano.2c07910. Epub 2022 Oct 21.
10
Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires.
Adv Mater. 2022 Aug;34(34):e2200656. doi: 10.1002/adma.202200656. Epub 2022 Jul 22.

本文引用的文献

1
Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires.
Nat Nanotechnol. 2010 Jul;5(7):545-51. doi: 10.1038/nnano.2010.104. Epub 2010 Jun 13.
2
Magnetic tweezers measurement of single molecule torque.
Nano Lett. 2009 Apr;9(4):1720-5. doi: 10.1021/nl900631w.
3
Nonlinear optics in photonic nanowires.
Opt Express. 2008 Jan 21;16(2):1300-20. doi: 10.1364/oe.16.001300.
4
Mesoporous silica nanospheres as highly efficient MRI contrast agents.
J Am Chem Soc. 2008 Feb 20;130(7):2154-5. doi: 10.1021/ja710193c. Epub 2008 Jan 25.
5
Nanoelectronics from the bottom up.
Nat Mater. 2007 Nov;6(11):841-50. doi: 10.1038/nmat2028.
6
Fabrication and magnetic properties of arrays of metallic nanowires.
Science. 1993 Sep 3;261(5126):1316-9. doi: 10.1126/science.261.5126.1316.
7
Structural plasticity of single chromatin fibers revealed by torsional manipulation.
Nat Struct Mol Biol. 2006 May;13(5):444-50. doi: 10.1038/nsmb1087. Epub 2006 Apr 16.
8
Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings.
Phys Rev Lett. 2006 Jan 20;96(2):027205. doi: 10.1103/PhysRevLett.96.027205. Epub 2006 Jan 17.
9
Cancer nanotechnology: opportunities and challenges.
Nat Rev Cancer. 2005 Mar;5(3):161-71. doi: 10.1038/nrc1566.
10
Multifunctional nanorods for gene delivery.
Nat Mater. 2003 Oct;2(10):668-71. doi: 10.1038/nmat974. Epub 2003 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验