Wang Fang, Liu Cong, Dai Zhengjin, Xu Weizhong, Ma Xinyue, Gao Yufeng, Ge Xuewu, Zheng Wei, Du Xuemin
Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Innovation (Camb). 2024 Dec 12;6(1):100742. doi: 10.1016/j.xinn.2024.100742. eCollection 2025 Jan 6.
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios. These PPTs allow for remote and programmable manipulation of objects with diverse materials (polymer, inorganic, and metal), different phases (bubble, liquid, and solid), and various geometries (sphere, cuboid, and wire). Furthermore, the PPT is not only adaptable to high-conductivity media but also applicable to both portable macroscopic manipulation platforms and microscopic manipulation systems, enabling cross-scale manipulations for solid objects, liquid droplets, and biological samples. The high-level flexibility and adaptability of the PPT extend to broad applications in manipulating hydrogel robots, sorting particles, assembling cells, and stimulating cells. By surpassing the limitations of conventional tweezers, the PPT bridges the gap between macroscopic and microscopic manipulations, offering a revolutionary tool in robotics, colloidal science, biomedical fields, and beyond.
光镊及相关技术为物理、生物和医学领域的研究与应用提供了绝佳机遇。然而,某些关键要求,如高强度激光束、复杂的电极设计、额外的电源或低导电介质,严重阻碍了它们的灵活性和适应性,从而限制了其实际应用。在此,我们报告了一种创新的光热释电镊子(PPT),它通过利用具有高效且持久的光致表面电荷产生能力的合理设计的光热释电基板,结合了光和电场的优点,能够在各种工作场景中进行多样化操作。这些PPT能够对具有不同材料(聚合物、无机和金属)、不同相态(气泡、液体和固体)以及各种几何形状(球体、长方体和金属丝)的物体进行远程和可编程操作。此外,PPT不仅适用于高导电介质,还适用于便携式宏观操作平台和微观操作系统,能够对固体物体、液滴和生物样品进行跨尺度操作。PPT的高度灵活性和适应性扩展到了操纵水凝胶机器人、分选颗粒、组装细胞和刺激细胞等广泛应用中。通过突破传统镊子的局限性,PPT弥合了宏观和微观操作之间的差距,为机器人技术、胶体科学、生物医学领域及其他领域提供了一种革命性的工具。