Suppr超能文献

温和灸的不确定性分析与优化。

Uncertainty analysis and optimization for mild moxibustion.

机构信息

Hunan University of Chinese Medicine, Changsha, PR China.

Hunan City University, Yiyang, PR China.

出版信息

PLoS One. 2023 Apr 17;18(4):e0282355. doi: 10.1371/journal.pone.0282355. eCollection 2023.

Abstract

During mild moxibustion treatment, uncertainties are involved in the operating parameters, such as the moxa-burning temperature, the moxa stick sizes, the stick-to-skin distance, and the skin moisture content. It results in fluctuations in skin surface temperature during mild moxibustion. Existing mild moxibustion treatments almost ignore the uncertainty of operating parameters. The uncertainties lead to excessive skin surface temperature causing intense pain, or over-low temperature reducing efficacy. Therefore, the interval model was employed to measure the uncertainty of the operation parameters in mild moxibustion, and the uncertainty optimization design was performed for the operation parameters. It aimed to provide the maximum thermal penetration of mild moxibustion to enhance efficacy while meeting the surface temperature requirements. The interval uncertainty optimization can fully consider the operating parameter uncertainties to ensure optimal thermal penetration and avoid patient discomfort caused by excessive skin surface temperature. To reduce the computational burden of the optimization solution, a high-precision surrogate model was established through a radial basis neural network (RBNN), and a nonlinear interval model for mild moxibustion treatment was formulated. By introducing the reliability-based possibility degree of interval (RPDI), the interval uncertainty optimization was transformed into a deterministic optimization problem, solved by the genetic algorithm. The results showed that this method could significantly improve the thermal penetration of mild moxibustion while meeting the skin surface temperature requirements, thereby enhancing efficacy.

摘要

在温和灸治疗中,操作参数存在不确定性,例如艾条燃烧温度、艾条大小、艾条与皮肤的距离以及皮肤含水量。这导致温和灸治疗过程中皮肤表面温度出现波动。现有的温和灸治疗方法几乎忽略了操作参数的不确定性。这些不确定性会导致皮肤表面温度过高引起强烈疼痛,或者温度过低降低疗效。因此,本文采用区间模型来测量温和灸治疗中操作参数的不确定性,并对操作参数进行不确定性优化设计。旨在提供温和灸治疗的最大热渗透,以增强疗效,同时满足表面温度要求。区间不确定性优化可以充分考虑操作参数的不确定性,确保最佳热渗透,避免因皮肤表面温度过高而引起的患者不适。为了降低优化求解的计算负担,通过径向基神经网络(RBNN)建立了高精度的代理模型,并构建了温和灸治疗的非线性区间模型。通过引入区间可靠性可能性度(RPDI),将区间不确定性优化问题转化为确定性优化问题,通过遗传算法进行求解。结果表明,该方法可以在满足皮肤表面温度要求的同时,显著提高温和灸的热渗透,从而增强疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ca/10109485/2d22ebdb80cf/pone.0282355.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验