Suppr超能文献

大型文库对接新型 SARS-CoV-2 主蛋白酶非共价和共价抑制剂。

Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors.

机构信息

Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA.

Graduate Program in Biophysics, University of California-San Francisco, San Francisco, California, USA.

出版信息

Protein Sci. 2023 Aug;32(8):e4712. doi: 10.1002/pro.4712.

Abstract

Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (M ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC of 29 and 20 μM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of M inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like M versus other targets where it has been more successful, and versus other structure-based techniques against M itself.

摘要

需要抗病毒疗法来治疗 SARS-CoV-2,以降低当前 COVID-19 大流行的发病率。一个有充分先例的药物靶点是主要病毒蛋白酶(M),它是一种已批准药物和几种研究性药物的靶点。新出现的病毒耐药性使得新的抑制剂类更加迫切。我们采用基于结构的方法,将 12 亿个非共价键类似物和一个新的 650 万个亲电试剂库对接在酶结构上。从这些化合物中,我们在 37 个系列中鉴定出 29 个非共价和 11 个共价抑制剂,其中最有效的抑制剂的 IC 分别为 29 和 20 μM。对几个系列进行了优化,得到了低微摩尔抑制剂。随后的晶体学证实了对接预测的结合模式,并可能为进一步优化提供模板。虽然新的化学类型可能有助于进一步优化针对 SARS-CoV-2 的 M 抑制剂,但这种中等的成功率也揭示了我们的方法在应对 M 等具有挑战性的目标方面的弱点,与其他目标相比,它在其他针对 M 本身的基于结构的技术方面也更为成功。

相似文献

引用本文的文献

1
Structure-based rational design of covalent probes.基于结构的共价探针合理设计。
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
2
A Database for Large-Scale Docking and Experimental Results.一个用于大规模对接和实验结果的数据库。
J Chem Inf Model. 2025 May 12;65(9):4458-4467. doi: 10.1021/acs.jcim.5c00394. Epub 2025 Apr 24.
7
Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds.基于分层可导航小世界的检索增强对接。
J Chem Inf Model. 2024 Oct 14;64(19):7398-7408. doi: 10.1021/acs.jcim.4c00683. Epub 2024 Oct 3.
8
Identifying Artifacts from Large Library Docking.从大型库对接中识别伪影。
J Med Chem. 2024 Sep 26;67(18):16796-16806. doi: 10.1021/acs.jmedchem.4c01632. Epub 2024 Sep 10.
10
Identifying Artifacts from Large Library Docking.从大型库对接中识别伪影。
bioRxiv. 2024 Jul 18:2024.07.17.603966. doi: 10.1101/2024.07.17.603966.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验