Ding Hanlin, Feng Yipeng, Huang Xing, Xu Jijing, Zhang Te, Liang Yingkuan, Wang Hui, Chen Bing, Mao Qixing, Xia Wenjie, Huang Xiaocheng, Xu Lin, Dong Gaochao, Jiang Feng
Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
Histopathology. 2023 Aug;83(2):211-228. doi: 10.1111/his.14918. Epub 2023 Apr 18.
Classification of histological patterns in lung adenocarcinoma (LUAD) is critical for clinical decision-making, especially in the early stage. However, the inter- and intraobserver subjectivity of pathologists make the quantification of histological patterns varied and inconsistent. Moreover, the spatial information of histological patterns is not evident to the naked eye of pathologists.
We establish the LUAD-subtype deep learning model (LSDLM) with optimal ResNet34 followed by a four-layer Neural Network classifier, based on 40 000 well-annotated path-level tiles. The LSDLM shows robust performance for the identification of histopathological subtypes on the whole-slide level, with an area under the curve (AUC) value of 0.93, 0.96 and 0.85 across one internal and two external validation data sets. The LSDLM is capable of accurately distinguishing different LUAD subtypes through confusion matrices, albeit with a bias for high-risk subtypes. It possesses mixed histology pattern recognition on a par with senior pathologists. Combining the LSDLM-based risk score with the spatial K score (K-RS) shows great capacity for stratifying patients. Furthermore, we found the corresponding gene-level signature (AI-SRSS) to be an independent risk factor correlated with prognosis.
Leveraging state-of-the-art deep learning models, the LSDLM shows capacity to assist pathologists in classifying histological patterns and prognosis stratification of LUAD patients.
肺腺癌(LUAD)组织学模式的分类对于临床决策至关重要,尤其是在早期阶段。然而,病理学家在观察者间和观察者内的主观性使得组织学模式的量化存在差异且不一致。此外,组织学模式的空间信息对于病理学家的肉眼来说并不明显。
我们基于40000个标注良好的病理级别切片,建立了具有最优ResNet34并随后接四层神经网络分类器的LUAD亚型深度学习模型(LSDLM)。LSDLM在全切片水平上对组织病理学亚型的识别表现出强大的性能,在一个内部验证数据集和两个外部验证数据集中,曲线下面积(AUC)值分别为0.93、0.96和0.85。LSDLM能够通过混淆矩阵准确区分不同的LUAD亚型,尽管对高风险亚型存在偏差。它在混合组织学模式识别方面与资深病理学家相当。将基于LSDLM的风险评分与空间K评分(K-RS)相结合显示出强大的患者分层能力。此外,我们发现相应的基因水平特征(AI-SRSS)是与预后相关的独立危险因素。
利用最先进的深度学习模型,LSDLM显示出协助病理学家对LUAD患者进行组织学模式分类和预后分层的能力。