Suppr超能文献

利用深度神经网络对切除的肺腺癌切片进行病理学家级别的组织学模式分类。

Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks.

机构信息

Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA.

Department of Computer Science, Dartmouth College, Hanover, NH, USA.

出版信息

Sci Rep. 2019 Mar 4;9(1):3358. doi: 10.1038/s41598-019-40041-7.

Abstract

Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .

摘要

肺腺癌的组织学模式分类对于确定肿瘤分级和患者治疗至关重要。然而,由于肺腺癌的异质性和评估的主观标准,这项任务通常具有挑战性。在这项研究中,我们提出了一种深度学习模型,可自动对手术切除切片中的肺腺癌组织学模式进行分类。我们的模型使用卷积神经网络来识别肿瘤细胞区域,然后汇总这些分类,以推断任何给定全切片图像的主要和次要组织学模式。我们在 143 张独立的全切片图像上评估了我们的模型。它与三位病理学家在主要模式分类方面的kappa 评分达到 0.525,一致性达到 66.6%,略高于该测试集上三位病理学家的kappa 评分 0.485 和一致性 62.7%。我们的模型和三位病理学家的所有评估指标都在一致性的 95%置信区间内。如果在临床实践中得到证实,我们的模型可以通过在审查前自动预筛选和突出显示癌性区域,帮助病理学家改善肺腺癌模式的分类。我们的方法可以推广到任何全切片图像分类任务,代码可在 https://github.com/BMIRDS/deepslide 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d08/6399447/eb1368a972d1/41598_2019_40041_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验