Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
ACS Appl Mater Interfaces. 2023 May 3;15(17):21413-21424. doi: 10.1021/acsami.3c00194. Epub 2023 Apr 18.
Silicon carbide (SiC) nanoparticles containing lattice defects are attracting considerable attention as next-generation imaging probes and quantum sensors for visualizing and sensing life activities. However, SiC nanoparticles are not currently used in biomedical applications because of the lack of technology for controlling their physicochemical properties. Therefore, in this study, SiC nanoparticles are deaggregated, surface-coated, functionalized, and selectively labeled to biomolecules of interest. A thermal-oxidation chemical-etching method is developed for deaggregating and producing a high yield of dispersed metal-contaminant-free SiC nanoparticles. We further demonstrated a polydopamine coating with controllable thickness that can be used as a platform for decorating gold nanoparticles on the surface, enabling photothermal application. We also demonstrated a polyglycerol coating, which gives excellent dispersity to SiC nanoparticles. Furthermore, a single-pot method is developed to produce mono/multifunctional polyglycerol-modified SiC nanoparticles. Using this method, CD44 proteins on cell surfaces are selectively labeled through biotin-mediated immunostaining. The methods developed in this study are fundamental for applying SiC nanoparticles to biomedical applications and should considerably accelerate the development of various SiC nanoparticles to exploit their potential applications in bioimaging and biosensing.
碳化硅(SiC)纳米颗粒含有晶格缺陷,作为下一代成像探针和量子传感器,用于可视化和感测生命活动,引起了相当大的关注。然而,由于缺乏控制其物理化学性质的技术,SiC 纳米颗粒目前尚未用于生物医学应用。因此,在本研究中,对 SiC 纳米颗粒进行解团聚、表面涂层、功能化和选择性标记感兴趣的生物分子。开发了一种热氧化化学蚀刻方法来解团聚并产生高产量的分散、无金属污染物的 SiC 纳米颗粒。我们进一步证明了具有可控厚度的聚多巴胺涂层可用作表面修饰金纳米颗粒的平台,从而实现光热应用。我们还证明了聚甘油涂层,它赋予 SiC 纳米颗粒极好的分散性。此外,还开发了一种一锅法来制备单功能/多功能聚甘油修饰的 SiC 纳米颗粒。通过这种方法,通过生物素介导的免疫染色选择性标记细胞表面上的 CD44 蛋白。本研究中开发的方法为 SiC 纳米颗粒在生物医学应用中的应用奠定了基础,应该会极大地加速各种 SiC 纳米颗粒的发展,以挖掘它们在生物成像和生物传感中的潜在应用。