Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore.
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore 138648 , Republic of Singapore.
Environ Sci Technol. 2023 May 2;57(17):6825-6834. doi: 10.1021/acs.est.2c05642. Epub 2023 Apr 18.
Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life () in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its . Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3-3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.
全氟辛酸(PFOA)是一种环境毒物,在人体内的生物半衰期长达数年(),并与不良健康影响有关。然而,对其毒代动力学(TK)的了解有限,阻碍了必要的风险评估。在这里,我们构建了第一个中间向外的基于生理学的毒代动力学(PBTK)模型,以从机制上解释 PFOA 在人体内的持久性。我们彻底表征了体外转运蛋白的动力学,并使用基于定量蛋白质组学的体外到体内外推法将其放大为体内清除率。这些数据以及 PFOA 的物理化学参数被用于参数化我们的模型。我们发现了一种新型的 PFOA 摄取转运蛋白,很可能是单羧酸转运蛋白 1,它在人体组织中广泛表达,可能介导广泛的组织穿透。我们的模型能够再现 I 期剂量递增试验的临床数据以及来自临床试验和生物监测研究的不同半衰期。模拟和敏感性分析证实了肾脏转运蛋白在驱动广泛的 PFOA 重吸收、降低其清除率和增加其半衰期方面的重要性。至关重要的是,包含一个假设的、可饱和的肾基底外侧外排转运蛋白为临床(116 天)和生物监测研究(1.3-3.9 年)报告的 PFOA 的不同半衰期提供了第一个统一的解释。目前正在努力使用类似的工作流程为其他全氟烷基物质构建 PBTK 模型,以评估它们的 TK 谱并促进风险评估。