Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore.
Innovations in Food and Chemical Safety, Agency for Science Technology and Research, Singapore.
ALTEX. 2019;36(4):597-612. doi: 10.14573/altex.1812051. Epub 2019 May 10.
There is a growing need for alternatives to animal testing to derive biokinetic data for evaluating both efficacy and safety of chemicals. One such alternative is bottom-up physiologically-based biokinetic (PBK) modeling which requires only in vitro data. The primary objective of this study is to develop and validate bottom-up PBK models of 3 HMG-CoA reductase inhibitors: rosuvastatin, fluvastatin and pitavastatin. Bottom-up PBK models were built using the Simcyp® Simulator by incorporating in vitro transporter and metabolism data (Vmax, Jmax, Km, CLint) obtained from the literature and proteomics-based scaling factors to account for differences in transporters expression between in vitro systems and in vivo organs. Simulations were performed for single intravenous, single oral and multiple oral dose of these chemicals. The results showed that our bottom-up models predicted systemic exposure (AUC0h-t), maximum plasma concentration (Cmax), plasma clearance and time to reach Cmax (Tmax) within two-fold of the observed data, with the exception of parameters associated with multiple oral pitavastatin dosing and single oral fluvastatin dosing. Additional middle-out simulations were performed using animal distribution data to inform tissue-to-plasma equilibrium distribution ratios for rosuvastatin and pitavastatin. This improved the predicted plasma-concentration time profiles but did not significantly alter the predicted biokinetic parameters. Our study demonstrates that quantitative proteomics-based mechanistic in vitro-to-in vivo extrapolation (IVIVE) could account for downregulation of transporters in culture and predict whole organ clearances without empirical scaling. Hence, bottom-up PBK modeling incorporating mechanistic IVIVE could be a viable alternative to animal testing in predicting human biokinetics.
为了评估化学物质的疗效和安全性,替代动物测试获取生物动力学数据的需求日益增长。一种替代方法是自下而上的基于生理学的生物动力学 (PBK) 建模,该方法仅需要体外数据。本研究的主要目的是开发和验证 3 种 HMG-CoA 还原酶抑制剂(瑞舒伐他汀、氟伐他汀和匹伐他汀)的自下而上 PBK 模型。通过使用 Simcyp® Simulator,将从文献中获得的体外转运体和代谢数据(Vmax、Jmax、Km、CLint)以及基于蛋白质组学的缩放因子纳入模型,以解释体外系统和体内器官之间转运体表达的差异,从而构建自下而上的 PBK 模型。对这些化合物进行了单次静脉注射、单次口服和多次口服剂量的模拟。结果表明,除了与多次口服匹伐他汀和单次口服氟伐他汀剂量相关的参数外,我们的自下而上模型预测的全身暴露量(AUC0h-t)、最大血浆浓度(Cmax)、血浆清除率和达到 Cmax 的时间(Tmax)与观察数据的差异在两倍以内。使用动物分布数据进行了额外的中间模拟,以告知瑞舒伐他汀和匹伐他汀的组织-血浆平衡分布比。这改善了预测的血浆浓度时间曲线,但没有显著改变预测的生物动力学参数。我们的研究表明,基于定量蛋白质组学的机制性体外到体内外推(IVIVE)可以解释培养中转运体的下调,并在不进行经验缩放的情况下预测整个器官清除率。因此,纳入机制性 IVIVE 的自下而上 PBK 建模可能是替代动物测试预测人体生物动力学的可行方法。