文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于温度敏感脂质体的癌症纳米医学可实现肿瘤淋巴结免疫微环境重塑。

Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling.

机构信息

NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.

出版信息

Nat Commun. 2023 Apr 19;14(1):2248. doi: 10.1038/s41467-023-38014-6.


DOI:10.1038/s41467-023-38014-6
PMID:37076492
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10115817/
Abstract

Targeting tumour immunosuppressive microenvironment is a crucial strategy in immunotherapy. However, the critical role of the tumour lymph node (LN) immune microenvironment (TLIME) in the tumour immune homoeostasis is often ignored. Here, we present a nanoinducer, NIL-IM-Lip, that remodels the suppressed TLIME via simultaneously mobilizing T and NK cells. The temperature-sensitive NIL-IM-Lip is firstly delivered to tumours, then directed to the LNs following pH-sensitive shedding of NGR motif and MMP2-responsive release of IL-15. IR780 and 1-MT induces immunogenic cell death and suppress regulatory T cells simultaneously during photo-thermal stimulation. We demonstrate that combining NIL-IM-Lip with anti-PD-1 significantly enhances the effectiveness of T and NK cells, leading to greatly suppressed tumour growth in both hot and cold tumour models, with complete response in some instances. Our work thus highlights the critical role of TLIME in immunotherapy and provides proof of principle to combine LN targeting with immune checkpoint blockade in cancer immunotherapy.

摘要

靶向肿瘤免疫抑制微环境是免疫治疗的关键策略。然而,肿瘤淋巴结(LN)免疫微环境(TLIME)在肿瘤免疫稳态中的关键作用往往被忽视。在这里,我们提出了一种纳米诱导剂 NIL-IM-Lip,它通过同时动员 T 细胞和 NK 细胞来重塑受抑制的 TLIME。温度敏感的 NIL-IM-Lip 首先被递送到肿瘤中,然后在 NGR 基序的 pH 敏感脱落和 MMP2 响应性释放 IL-15 后被导向 LNs。IR780 和 1-MT 在光热刺激过程中同时诱导免疫原性细胞死亡和抑制调节性 T 细胞。我们证明,将 NIL-IM-Lip 与抗 PD-1 联合使用可显著增强 T 细胞和 NK 细胞的有效性,从而在热肿瘤和冷肿瘤模型中大大抑制肿瘤生长,在某些情况下可达到完全缓解。我们的工作因此强调了 TLIME 在免疫治疗中的关键作用,并为将 LN 靶向与免疫检查点阻断相结合用于癌症免疫治疗提供了原理证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/fd3dbe46976f/41467_2023_38014_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/23bb004a0939/41467_2023_38014_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/9927143b2806/41467_2023_38014_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/b020d8fc182d/41467_2023_38014_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/aabbcca6af45/41467_2023_38014_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/a65c38ec87fa/41467_2023_38014_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/80b93dfd57a9/41467_2023_38014_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/665c3e60421e/41467_2023_38014_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/fd3dbe46976f/41467_2023_38014_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/23bb004a0939/41467_2023_38014_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/9927143b2806/41467_2023_38014_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/b020d8fc182d/41467_2023_38014_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/aabbcca6af45/41467_2023_38014_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/a65c38ec87fa/41467_2023_38014_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/80b93dfd57a9/41467_2023_38014_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/665c3e60421e/41467_2023_38014_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec4/10115817/fd3dbe46976f/41467_2023_38014_Fig8_HTML.jpg

相似文献

[1]
Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling.

Nat Commun. 2023-4-19

[2]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

[3]
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.

J Control Release. 2021-4-10

[4]
Interrogating the roles of lymph node metastasis in systemic immune surveillance.

Clin Exp Metastasis. 2024-8

[5]
Microenvironment of tumor-draining lymph nodes: opportunities for liposome-based targeted therapy.

Int J Mol Sci. 2014-11-5

[6]
Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment.

Acta Biomater. 2022-8

[7]
Modulation of Tumor Hypoxia by pH-Responsive Liposomes to Inhibit Mitochondrial Respiration for Enhancing Sonodynamic Therapy.

Int J Nanomedicine. 2020-8-6

[8]
Lymph node targeting strategy using a hydrogel sustained-release system to load effector memory T cells improves the anti-tumor efficacy of anti-PD-1.

Acta Biomater. 2024-5

[9]
Lymph Node Delivery Strategy Enables the Activation of Cytotoxic T Lymphocytes and Natural Killer Cells to Augment Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2021-5-19

[10]
Dual-Responsive Nanomedicine Activates Programmed Antitumor Immunity through Targeting Lymphatic System.

ACS Nano. 2024-4-30

引用本文的文献

[1]
Recent Advances in Combination Therapy of YAP Inhibitors with Physical Anti-Cancer Strategies.

Biomolecules. 2025-6-29

[2]
Modulation of the immune microenvironment using nanomaterials: a new strategy for tumor immunotherapy.

Front Immunol. 2025-7-2

[3]
NGR-modified nanovesicles target ALKBH5 to inhibit ovarian cancer growth and metastasis.

Theranostics. 2025-6-9

[4]
Proanthocyanidin-Conjugated NIR-ΙΙ Nano-Prodrugs for Reversing Drug Resistance in Photothermal Therapy.

Molecules. 2025-5-27

[5]
Emerging strategies in lymph node-targeted nano-delivery systems for tumor immunotherapy.

Essays Biochem. 2025-3-28

[6]
Restoring Tumor Cell Immunogenicity Through Ion-Assisted p53 mRNA Domestication for Enhanced In Situ Cancer Vaccination Effect.

Adv Sci (Weinh). 2025-4

[7]
Harnessing nanotechnology for cancer treatment.

Front Bioeng Biotechnol. 2025-1-20

[8]
Liposomal Formulations: A Recent Update.

Pharmaceutics. 2024-12-30

[9]
Development and Evaluation of the Immunogenic Potential of an Unmodified Nucleoside mRNA Vaccine for Herpes Zoster.

Vaccines (Basel). 2025-1-13

[10]
NK Cells in the Lymph Nodes and Their Role in Anti-Tumour Immunity.

Biomedicines. 2024-7-25

本文引用的文献

[1]
Reshaping the Tumor Immune Microenvironment Based on a Light-Activated Nanoplatform for Efficient Cancer Therapy.

Adv Mater. 2022-3

[2]
The foundations of immune checkpoint blockade and the ipilimumab approval decennial.

Nat Rev Drug Discov. 2022-7

[3]
Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns.

Nat Biomed Eng. 2022-1

[4]
Hallmarks of response, resistance, and toxicity to immune checkpoint blockade.

Cell. 2021-10-14

[5]
Lymph-Node-Targeted Cholesterolized TLR7 Agonist Liposomes Provoke a Safe and Durable Antitumor Response.

Nano Lett. 2021-10-13

[6]
Signal strength controls the rate of polarization within CTLs during killing.

J Cell Biol. 2021-10-4

[7]
Lymph Node Delivery Strategy Enables the Activation of Cytotoxic T Lymphocytes and Natural Killer Cells to Augment Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2021-5-19

[8]
Systemic immunity in cancer.

Nat Rev Cancer. 2021-6

[9]
Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection.

Nat Nanotechnol. 2021-5

[10]
Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy.

Adv Drug Deliv Rev. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索