Suppr超能文献

基于贝叶斯决策分析的心力衰竭器械以患者为中心的临床试验设计。

Patient-Centered Clinical Trial Design for Heart Failure Devices via Bayesian Decision Analysis.

机构信息

QLS Advisors, Cambridge, MA, USA.

Abbott Laboratories, Abbott Park, IL, USA.

出版信息

Patient. 2023 Jul;16(4):359-369. doi: 10.1007/s40271-023-00623-0. Epub 2023 Apr 19.

Abstract

BACKGROUND

The statistical significance of clinical trial outcomes is generally interpreted quantitatively according to the same threshold of 2.5% (in one-sided tests) to control the false-positive rate or type I error, regardless of the burden of disease or patient preferences. The clinical significance of trial outcomes-including patient preferences-are also considered, but through qualitative means that may be challenging to reconcile with the statistical evidence.

OBJECTIVE

We aimed to apply Bayesian decision analysis to heart failure device studies to choose an optimal significance threshold that maximizes the expected utility to patients across both the null and alternative hypotheses, thereby allowing clinical significance to be incorporated into statistical decisions either in the trial design stage or in the post-trial interpretation stage. In this context, utility is a measure of how much well-being the approval decision for the treatment provides to the patient.

METHODS

We use the results from a discrete-choice experiment study focusing on heart failure patients' preferences, questioning respondents about their willingness to accept therapeutic risks in exchange for quantifiable benefits with alternative hypothetical medical device performance characteristics. These benefit-risk trade-off data allow us to estimate the loss in utility-from the patient perspective-of a false-positive or false-negative pivotal trial result. We compute the Bayesian decision analysis-optimal statistical significance threshold that maximizes the expected utility to heart failure patients for a hypothetical two-arm, fixed-sample, randomized controlled trial. An interactive Excel-based tool is provided that illustrates how the optimal statistical significance threshold changes as a function of patients' preferences for varying rates of false positives and false negatives, and as a function of assumed key parameters.

RESULTS

In our baseline analysis, the Bayesian decision analysis-optimal significance threshold for a hypothetical two-arm randomized controlled trial with a fixed sample size of 600 patients per arm was 3.2%, with a statistical power of 83.2%. This result reflects the willingness of heart failure patients to bear additional risks of the investigational device in exchange for its probable benefits. However, for increased device-associated risks and for risk-averse subclasses of heart failure patients, Bayesian decision analysis-optimal significance thresholds may be smaller than 2.5%.

CONCLUSIONS

A Bayesian decision analysis is a systematic, transparent, and repeatable process for combining clinical and statistical significance, explicitly incorporating burden of disease and patient preferences into the regulatory decision-making process.

摘要

背景

临床试验结果的统计学意义通常根据相同的 2.5%(单侧检验)阈值进行定量解释,以控制假阳性率或 I 型错误,而不管疾病负担或患者偏好如何。试验结果的临床意义——包括患者偏好——也会被考虑,但通过定性的方法,可能难以与统计证据相协调。

目的

我们旨在应用贝叶斯决策分析心力衰竭装置研究,选择一个最佳的显著水平,使零假设和备择假设下的患者预期效用最大化,从而使临床意义能够纳入试验设计阶段或试验后解释阶段的统计决策。在这种情况下,效用是批准治疗决策为患者提供的幸福感的衡量标准。

方法

我们使用一项关注心力衰竭患者偏好的离散选择实验研究的结果,询问受访者是否愿意接受治疗风险,以换取具有替代假设的医疗设备性能特征的可量化收益。这些收益-风险权衡数据使我们能够从患者的角度估计假阳性或假阴性关键试验结果的效用损失。我们计算了贝叶斯决策分析——为假设的两臂、固定样本、随机对照试验最大化心力衰竭患者预期效用的最佳统计学显著水平。提供了一个基于 Excel 的交互式工具,说明了最优统计学显著水平如何随着患者对不同假阳性和假阴性率的偏好以及假设的关键参数而变化。

结果

在我们的基线分析中,对于每臂固定样本量为 600 名患者的假设两臂随机对照试验,贝叶斯决策分析的最佳显著水平为 3.2%,统计功效为 83.2%。这一结果反映了心力衰竭患者愿意承担研究设备的额外风险,以换取其可能的收益。然而,对于设备相关风险的增加和风险厌恶的心力衰竭患者亚类,贝叶斯决策分析的最佳显著水平可能小于 2.5%。

结论

贝叶斯决策分析是一种系统、透明和可重复的方法,用于结合临床和统计学意义,明确将疾病负担和患者偏好纳入监管决策过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验