Nagalingam Nagaraj, Raghunathan Aswin, Korede Vikram, Overmars Edwin F J, Hung Shih-Te, Hartkamp Remco, Padding Johan T, Smith Carlas S, Eral Huseyin Burak
Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
HardwareX. 2023 Mar 31;14:e00415. doi: 10.1016/j.ohx.2023.e00415. eCollection 2023 Jun.
Optofluidic devices have revolutionized the manipulation and transportation of fluid at smaller length scales ranging from micrometers to millimeters. We describe a dedicated optical setup for studying laser-induced cavitation inside a microchannel. In a typical experiment, we use a tightly focused laser beam to locally evaporate the solution laced with a dye resulting in the formation of a microbubble. The evolving bubble interface is tracked using high-speed microscopy and digital image analysis. Furthermore, we extend this system to analyze fluid flow through fluorescence-Particle Image Velocimetry (PIV) technique with minimal adaptations. In addition, we demonstrate the protocols for the in-house fabrication of a microchannel tailored to function as a sample holder in this optical setup. In essence, we present a complete guide for constructing a fluorescence microscope from scratch using standard optical components with flexibility in the design and at a lower cost compared to its commercial analogues.
光流体装置在从微米到毫米的更小长度尺度上彻底改变了流体的操控和运输方式。我们描述了一种用于研究微通道内激光诱导空化的专用光学装置。在典型实验中,我们使用紧密聚焦的激光束局部蒸发含有染料的溶液,从而形成微气泡。使用高速显微镜和数字图像分析跟踪不断演变的气泡界面。此外,我们对该系统进行扩展,以通过荧光粒子图像测速技术(PIV)分析流体流动,只需进行最少的调整。另外,我们展示了在内部制造适合在此光学装置中用作样品 holder 的微通道的方案。本质上,我们提供了一份完整指南,介绍如何使用标准光学组件从零开始构建荧光显微镜,该显微镜在设计上具有灵活性,且成本低于其商业同类产品。