Suppr超能文献

在生物材料纤维化模型中的迁移学习确定了体内衰老异质性,并有助于跨物种和多种病理的血管生成和基质产生。

Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies.

机构信息

Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.

出版信息

Geroscience. 2023 Aug;45(4):2559-2587. doi: 10.1007/s11357-023-00785-7. Epub 2023 Apr 20.

Abstract

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreER;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.

摘要

细胞衰老(Cellular senescence)是一种永久性生长停滞的状态,在伤口愈合、组织纤维化和肿瘤抑制中发挥着重要作用。尽管衰老细胞(SnCs)具有病理性作用和治疗意义,但它们在体内的表型仍未得到很好的定义。在这里,我们使用 p16-CreER;Ai14 报告小鼠的异物反应驱动的纤维化模型,开发了一种体内衍生的衰老特征(SenSig)。我们确定了周细胞和“软骨样”成纤维细胞是衰老的,并定义了细胞类型特异性的衰老相关分泌表型(SASPs)。迁移学习和衰老评分确定了这两个 SnC 群体,以及新的和公开的来自不同病理学的鼠类和人类单细胞 RNA 测序(scRNAseq)数据集以及内皮细胞和上皮细胞中的 SnC。信号分析揭示了 SnC 与髓样细胞之间通过 IL34-CSF1R-TGFβR 信号轴的相互作用,有助于血管生成和基质产生的组织平衡。总的来说,我们的研究提供了一个衰老特征和一种计算方法,可能广泛应用于识别伤口愈合、衰老和其他病理学中的 SnC 转录谱和 SASP 因子。

相似文献

引用本文的文献

本文引用的文献

7
Cross-tissue organization of the fibroblast lineage.成纤维细胞谱系的跨组织组织。
Nature. 2021 May;593(7860):575-579. doi: 10.1038/s41586-021-03549-5. Epub 2021 May 12.
9
GENCODE 2021.GENCODE 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D916-D923. doi: 10.1093/nar/gkaa1087.
10
Ensembl 2021.Ensembl 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891. doi: 10.1093/nar/gkaa942.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验