Xu Xiang, Zhang Qiangqiang, Hao Menglong, Hu Yuan, Lin Zhaoyang, Peng Lele, Wang Tao, Ren Xuexin, Wang Chen, Zhao Zipeng, Wan Chengzhang, Fei Huilong, Wang Lei, Zhu Jian, Sun Hongtao, Chen Wenli, Du Tao, Deng Biwei, Cheng Gary J, Shakir Imran, Dames Chris, Fisher Timothy S, Zhang Xiang, Li Hui, Huang Yu, Duan Xiangfeng
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, P. R. China.
Science. 2019 Feb 15;363(6428):723-727. doi: 10.1126/science.aav7304.
Ceramic aerogels are attractive for thermal insulation but plagued by poor mechanical stability and degradation under thermal shock. In this study, we designed and synthesized hyperbolic architectured ceramic aerogels with nanolayered double-pane walls with a negative Poisson's ratio (-0.25) and a negative linear thermal expansion coefficient (-1.8 × 10 per °C). Our aerogels display robust mechanical and thermal stability and feature ultralow densities down to 0.1 milligram per cubic centimeter, superelasticity up to 95%, and near-zero strength loss after sharp thermal shocks (275°C per second) or intense thermal stress at 1400°C, as well as ultralow thermal conductivity in vacuum [2.4 milliwatts per meter-kelvin (mW/m·K)] and in air (~20 mW/m·K). This robust material system is ideal for thermal superinsulation under extreme conditions, such as those encountered by spacecraft.
陶瓷气凝胶在隔热方面具有吸引力,但存在机械稳定性差和热冲击下会降解的问题。在本研究中,我们设计并合成了具有纳米层双壁结构的双曲线构造陶瓷气凝胶,其泊松比为负(-0.25),线性热膨胀系数为负(-1.8×10⁻⁶/°C)。我们的气凝胶表现出强大的机械和热稳定性,具有低至约0.1毫克每立方厘米的超低密度、高达95%的超弹性,以及在急剧热冲击(每秒275°C)或1400°C的强烈热应力后近乎零的强度损失,同时在真空中具有超低的热导率[约2.4毫瓦每米开尔文(mW/m·K)],在空气中约为20 mW/m·K。这种强大的材料体系非常适合极端条件下的热超绝缘,比如航天器所遇到的条件。