Yang Fengjin, Wang Zhifei, Zhang Wei, Wang Sai, Liu Yi-Tao, Wang Fei, Surmenev Roman A, Yu Jianyong, Zhang Shichao, Ding Bin
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, People's Republic of China.
Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia, 634050.
Nanomicro Lett. 2025 Aug 25;18(1):42. doi: 10.1007/s40820-025-01882-2.
Extreme cold weather seriously harms human thermoregulatory system, necessitating high-performance insulating garments to maintain body temperature. However, as the core insulating layer, advanced fibrous materials always struggle to balance mechanical properties and thermal insulation, resulting in their inability to meet the demands for both washing resistance and personal protection. Herein, inspired by the natural spring-like structures of cucumber tendrils, a superelastic and washable micro/nanofibrous sponge (MNFS) based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation. By regulating the conductivity of polyvinylidene fluoride solution, multiple-jet ejection and multiple-stage whipping of jets are achieved, and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers, which are directly entangled to assemble MNFS. The resulting MNFS exhibits superelasticity that can withstand large tensile strain (200%), 1000 cyclic tensile or compression deformations, and retain good resilience even in liquid nitrogen (- 196 °C). Furthermore, the MNFS shows efficient thermal insulation with low thermal conductivity (24.85 mW m K), close to the value of dry air, and remains structural stability even after cyclic washing. This work offers new possibilities for advanced fibrous sponges in transportation, environmental, and energy applications.
极端寒冷的天气严重损害人体体温调节系统,因此需要高性能的隔热服装来维持体温。然而,作为核心隔热层,先进的纤维材料总是难以平衡机械性能和隔热性能,导致它们无法满足耐洗涤性和个人防护的要求。在此,受黄瓜卷须天然弹簧状结构的启发,利用多喷头静电纺丝技术直接制备了一种基于仿生螺旋纤维的超弹性且可洗涤的微/纳米纤维海绵(MNFS),用于高性能隔热。通过调节聚偏氟乙烯溶液的电导率,实现了多喷头喷射和射流的多级抽打,进一步控制相分离速率可使射流快速凝固形成弹簧状螺旋纤维,这些纤维直接缠结组装成MNFS。所得的MNFS表现出超弹性,能够承受大拉伸应变(200%)、1000次循环拉伸或压缩变形,甚至在液氮(-196℃)中仍保持良好的弹性。此外,MNFS具有高效的隔热性能,热导率低(24.85 mW m⁻¹ K⁻¹),接近干燥空气的值,并且即使经过循环洗涤后仍保持结构稳定性。这项工作为先进纤维海绵在运输、环境和能源应用方面提供了新的可能性。