Suppr超能文献

氧化镧纳米粒子增强胶原 ƙ-卡拉胶羟磷灰石生物复合材料作为血管成骨生物材料用于体内骨整合和骨修复。

Lanthanum Oxide Nanoparticles Reinforced Collagen ƙ-Carrageenan Hydroxyapatite Biocomposite as Angio-Osteogenic Biomaterial for In Vivo Osseointegration and Bone Repair.

机构信息

Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India.

University of Madras, Chennai, Tamil Nadu, 600005, India.

出版信息

Adv Biol (Weinh). 2023 Aug;7(8):e2300039. doi: 10.1002/adbi.202300039. Epub 2023 Apr 20.

Abstract

A composite biomatrix fabricated with collagen, ƙ-carrageenan, hydroxyapatite reinforced with lanthanum oxide nanoparticles is explored as proangiogenic and osteogenic bone tissue repair biomaterial. The biomatrix shows increased physical and biological stability as observed from proteolytic degradation and thermal stability studies. The addition of lanthanum oxide nanoparticles facilitates good osseointegration coupled with simultaneous activation of proangiogenic properties to act as a bone mimicking material. The minimal level of reactive oxygen species and superior cytocompatibility help the as-synthesized biomatrix in achieving capillary migration into the bone micro environment. The composite biomatrix upregulates the expression of VEGF, VEGF-R2 genes in endothelial cells and osteopontin, osteocalcin in osteoblasts cells, respectively. The in vivo hard tissue repair experiment conducted in a rat model shows complete healing of the bone defect by eight weeks with the application of collagen-ƙ-carrageenan-hydroxyapatite-lanthanum oxide nanoparticle biomaterial when compared to the biomaterial made out of individual constituents alone. The biomaterial matrix gets biointegrated into the bone tissue and exerts its therapeutic value in bringing a faster osseo repair process. The study shows the feasibility of using rare-earth metal nanoparticles in combination with protein-polysaccharide biopolymers for bone regeneration.

摘要

一种由胶原蛋白、κ-卡拉胶、羟基磷灰石与氧化镧纳米粒子增强的复合材料被探索作为促血管生成和成骨的骨组织修复生物材料。从蛋白水解降解和热稳定性研究中可以看出,生物基质表现出更高的物理和生物稳定性。添加氧化镧纳米粒子有助于良好的骨整合,同时激活促血管生成特性,作为一种类似骨骼的材料。最小水平的活性氧和卓越的细胞相容性有助于合成的生物基质实现向骨微环境中的毛细血管迁移。该复合材料上调了内皮细胞中 VEGF、VEGF-R2 基因的表达,以及成骨细胞中骨桥蛋白、骨钙素的表达。在大鼠模型中的体内硬组织修复实验表明,与单独使用各成分制成的生物材料相比,应用胶原蛋白-κ-卡拉胶-羟基磷灰石-氧化镧纳米粒子生物材料可在 8 周内完全修复骨缺损。生物材料基质与骨组织生物整合,并发挥其治疗价值,加速骨修复过程。该研究表明,将稀土金属纳米粒子与蛋白-多糖生物聚合物结合使用在骨再生方面具有可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验