Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106, USA.
Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, 79104, Freiburg, Germany.
Sci Rep. 2023 Apr 20;13(1):6486. doi: 10.1038/s41598-023-33008-2.
Heuristics can inform human decision making in complex environments through a reduction of computational requirements (accuracy-resource trade-off) and a robustness to overparameterisation (less-is-more). However, tasks capturing the efficiency of heuristics typically ignore action proficiency in determining rewards. The requisite movement parameterisation in sensorimotor control questions whether heuristics preserve efficiency when actions are nontrivial. We developed a novel action selection-execution task requiring joint optimisation of action selection and spatio-temporal skillful execution. State-appropriate choices could be determined by a simple spatial heuristic, or by more complex planning. Computational models of action selection parsimoniously distinguished human participants who adopted the heuristic from those using a more complex planning strategy. Broader comparative analyses then revealed that participants using the heuristic showed combined decisional (selection) and skill (execution) advantages, consistent with a less-is-more framework. In addition, the skill advantage of the heuristic group was predominantly in the core spatial features that also shaped their decision policy, evidence that the dimensions of information guiding action selection might be yoked to salient features in skill learning.
启发式方法可以通过减少计算要求(准确性-资源权衡)和对超参数化的稳健性(少即是多)来为复杂环境中的人类决策提供信息。然而,捕捉启发式效率的任务通常忽略了在确定奖励时的动作熟练度。在感觉运动控制中,所需的运动参数化问题是,当动作变得复杂时,启发式是否能够保持效率。我们开发了一种新颖的动作选择-执行任务,要求联合优化动作选择和时空熟练执行。适当的状态选择可以通过简单的空间启发式或更复杂的规划来确定。动作选择的计算模型简洁地区分了采用启发式的人类参与者和采用更复杂规划策略的参与者。更广泛的比较分析表明,采用启发式的参与者在决策(选择)和技能(执行)方面都具有优势,这与少即是多的框架一致。此外,启发式组的技能优势主要在于形成其决策策略的核心空间特征,这表明指导动作选择的信息维度可能与技能学习中的显著特征相关联。