Suppr超能文献

大脑为何以及如何权衡来自多个专家的贡献。

Why and how the brain weights contributions from a mixture of experts.

作者信息

O'Doherty John P, Lee Sang Wan, Tadayonnejad Reza, Cockburn Jeff, Iigaya Kyo, Charpentier Caroline J

机构信息

Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, 91125, USA.

Department of Bio and Brain Engineering and Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon, 34141, Republic of Korea.

出版信息

Neurosci Biobehav Rev. 2021 Apr;123:14-23. doi: 10.1016/j.neubiorev.2020.10.022. Epub 2021 Jan 11.

Abstract

It has long been suggested that human behavior reflects the contributions of multiple systems that cooperate or compete for behavioral control. Here we propose that the brain acts as a "Mixture of Experts" in which different expert systems propose strategies for action. It will be argued that the brain determines which experts should control behavior at any one moment in time by keeping track of the reliability of the predictions within each system, and by allocating control over behavior in a manner that depends on the relative reliabilities across experts. fMRI and neurostimulation studies suggest a specific contribution of the anterior prefrontal cortex in this process. Further, such a mechanism also takes into consideration the complexity of the expert, favoring simpler over more cognitively complex experts. Results from the study of different expert systems in both experiential and social learning domains hint at the possibility that this reliability-based control mechanism is domain general, exerting control over many different expert systems simultaneously in order to produce sophisticated behavior.

摘要

长期以来,人们一直认为人类行为反映了多个系统的作用,这些系统相互协作或竞争以控制行为。在此,我们提出大脑充当“专家混合体”,其中不同的专家系统提出行动策略。有人认为,大脑通过跟踪每个系统内预测的可靠性,并以依赖于各专家相对可靠性的方式分配对行为的控制,来决定在任何时刻应由哪些专家控制行为。功能磁共振成像(fMRI)和神经刺激研究表明前额叶前部皮质在此过程中具有特定作用。此外,这种机制还考虑了专家的复杂性,更倾向于选择较简单而非认知上更复杂的专家。在经验学习和社会学习领域对不同专家系统的研究结果暗示,这种基于可靠性的控制机制可能具有领域通用性,能够同时对许多不同的专家系统进行控制,从而产生复杂的行为。

相似文献

1
Why and how the brain weights contributions from a mixture of experts.大脑为何以及如何权衡来自多个专家的贡献。
Neurosci Biobehav Rev. 2021 Apr;123:14-23. doi: 10.1016/j.neubiorev.2020.10.022. Epub 2021 Jan 11.

引用本文的文献

本文引用的文献

1
Humans primarily use model-based inference in the two-stage task.人类主要在两阶段任务中使用基于模型的推理。
Nat Hum Behav. 2020 Oct;4(10):1053-1066. doi: 10.1038/s41562-020-0905-y. Epub 2020 Jul 6.
6
Adaptive Mixtures of Local Experts.局部专家的自适应混合模型
Neural Comput. 1991 Spring;3(1):79-87. doi: 10.1162/neco.1991.3.1.79.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验