Suppr超能文献

小鼠卵母细胞和着床前胚胎的 RNA mA 景观。

The RNA mA landscape of mouse oocytes and preimplantation embryos.

机构信息

Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nat Struct Mol Biol. 2023 May;30(5):703-709. doi: 10.1038/s41594-023-00969-x. Epub 2023 Apr 20.

Abstract

Despite the significance of N-methyladenosine (mA) in gene regulation, the requirement for large amounts of RNA has hindered mA profiling in mammalian early embryos. Here we apply low-input methyl RNA immunoprecipitation and sequencing to map mA in mouse oocytes and preimplantation embryos. We define the landscape of mA during the maternal-to-zygotic transition, including stage-specifically expressed transcription factors essential for cell fate determination. Both the maternally inherited transcripts to be degraded post fertilization and the zygotically activated genes during zygotic genome activation are widely marked by mA. In contrast to mA-marked zygotic ally-activated genes, mA-marked maternally inherited transcripts have a higher tendency to be targeted by microRNAs. Moreover, RNAs derived from retrotransposons, such as MTA that is maternally expressed and MERVL that is transcriptionally activated at the two-cell stage, are largely marked by mA. Our results provide a foundation for future studies exploring the regulatory roles of mA in mammalian early embryonic development.

摘要

尽管 N6-甲基腺苷(m6A)在基因调控中具有重要意义,但由于需要大量的 RNA,m6A 在哺乳动物早期胚胎中的分析一直受到阻碍。在这里,我们应用低输入甲基 RNA 免疫沉淀和测序技术来绘制小鼠卵母细胞和着床前胚胎中的 m6A 图谱。我们定义了母源到合子过渡过程中 m6A 的图谱,包括对细胞命运决定至关重要的特定阶段表达的转录因子。在受精后被降解的母体遗传转录本和在合子基因组激活过程中被激活的合子基因都被广泛地标记为 m6A。与 m6A 标记的合子激活基因不同,m6A 标记的母体遗传转录本更容易被 microRNAs 靶向。此外,来自逆转座子的 RNA,如母系表达的 MTA 和在二细胞阶段转录激活的 MERVL,都被大量地标记为 m6A。我们的研究结果为未来研究 m6A 在哺乳动物早期胚胎发育中的调控作用提供了基础。

相似文献

1
The RNA mA landscape of mouse oocytes and preimplantation embryos.
Nat Struct Mol Biol. 2023 May;30(5):703-709. doi: 10.1038/s41594-023-00969-x. Epub 2023 Apr 20.
2
N-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition.
Nat Cell Biol. 2022 Jun;24(6):917-927. doi: 10.1038/s41556-022-00915-x. Epub 2022 May 23.
4
Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition.
Sci Adv. 2022 Feb 4;8(5):eabj3967. doi: 10.1126/sciadv.abj3967. Epub 2022 Feb 2.
5
Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos.
Sci Adv. 2016 Jun 10;2(6):e1501482. doi: 10.1126/sciadv.1501482. eCollection 2016 Jun.
6
Global gene expression profiling of preimplantation embryos.
Hum Cell. 2006 Aug;19(3):98-117. doi: 10.1111/j.1749-0774.2006.00018.x.
8
Nlrp2, a maternal effect gene required for early embryonic development in the mouse.
PLoS One. 2012;7(1):e30344. doi: 10.1371/journal.pone.0030344. Epub 2012 Jan 25.
9
Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse.
Nucleic Acids Res. 2020 Jan 24;48(2):879-894. doi: 10.1093/nar/gkz1111.
10
Reading and writing of mRNA mA modification orchestrate maternal-to-zygotic transition in mice.
Genome Biol. 2023 Apr 6;24(1):67. doi: 10.1186/s13059-023-02918-9.

引用本文的文献

1
m6A Methylation Modification: Perspectives on the Early Reproduction of Females.
Biomolecules. 2025 Jul 31;15(8):1102. doi: 10.3390/biom15081102.
2
Understanding the Molecular Basis of Miller-Dieker Syndrome.
Int J Mol Sci. 2025 Jul 30;26(15):7375. doi: 10.3390/ijms26157375.
5
The RNA mA landscape during human oocyte-to-embryo transition.
EMBO J. 2025 Jun 4. doi: 10.1038/s44318-025-00474-5.
7
YTHDF2 suppresses the 2C-like state in mouse embryonic stem cells via the DUX-ZSCAN4 molecular circuit.
J Biol Chem. 2025 May;301(5):108479. doi: 10.1016/j.jbc.2025.108479. Epub 2025 Apr 4.
8
Epigenome dynamics in early mammalian embryogenesis.
Nat Rev Genet. 2025 Apr 3. doi: 10.1038/s41576-025-00831-4.
9
The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus.
Nat Rev Genet. 2025 Apr;26(4):245-267. doi: 10.1038/s41576-024-00792-0. Epub 2024 Nov 25.
10
RNA mA modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells.
Cell Prolif. 2024 Sep;57(9):e13696. doi: 10.1111/cpr.13696. Epub 2024 Jul 1.

本文引用的文献

2
METTL3-mediated mRNA N-methyladenosine is required for oocyte and follicle development in mice.
Cell Death Dis. 2021 Oct 23;12(11):989. doi: 10.1038/s41419-021-04272-9.
4
Nuclear mA reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos.
Protein Cell. 2021 Jun;12(6):455-474. doi: 10.1007/s13238-021-00837-8. Epub 2021 Apr 22.
5
The RNA mA reader YTHDC1 silences retrotransposons and guards ES cell identity.
Nature. 2021 Mar;591(7849):322-326. doi: 10.1038/s41586-021-03313-9. Epub 2021 Mar 3.
6
METTL3 regulates heterochromatin in mouse embryonic stem cells.
Nature. 2021 Mar;591(7849):317-321. doi: 10.1038/s41586-021-03210-1. Epub 2021 Jan 27.
7
The roles of microRNAs in mouse development.
Nat Rev Genet. 2021 May;22(5):307-323. doi: 10.1038/s41576-020-00309-5. Epub 2021 Jan 15.
8
mA RNA methylation regulates the fate of endogenous retroviruses.
Nature. 2021 Mar;591(7849):312-316. doi: 10.1038/s41586-020-03135-1. Epub 2021 Jan 13.
9
Context-dependent functional compensation between Ythdf mA reader proteins.
Genes Dev. 2020 Oct 1;34(19-20):1373-1391. doi: 10.1101/gad.340695.120. Epub 2020 Sep 17.
10
Measuring and interpreting transposable element expression.
Nat Rev Genet. 2020 Dec;21(12):721-736. doi: 10.1038/s41576-020-0251-y. Epub 2020 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验