Suppr超能文献

大麻素的抗病毒活性。

Antiviral activities of hemp cannabinoids.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Global Hemp Innovation Center, Oregon State University, 2900 SW Campus Drive, Corvallis, OR 97331, U.S.A.

出版信息

Clin Sci (Lond). 2023 Apr 26;137(8):633-643. doi: 10.1042/CS20220193.

Abstract

Hemp is an understudied source of pharmacologically active compounds and many unique plant secondary metabolites including more than 100 cannabinoids. After years of legal restriction, research on hemp has recently demonstrated antiviral activities in silico, in vitro, and in vivo for cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and several other cannabinoids against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), and γ-herpes viruses. Mechanisms of action include inhibition of viral cell entry, inhibition of viral proteases, and stimulation of cellular innate immune responses. The anti-inflammatory properties of cannabinoids are also under investigation for mitigating the cytokine storm of COVID-19 and controlling chronic inflammation in people living with HIV. Retrospective clinical studies support antiviral activities of CBD, Δ9-THC, and cannabinoid mixtures as do some prospective clinical trials, but appropriately designed clinical trials of safety and efficacy of antiviral cannabinoids are urgently needed.

摘要

大麻是一种研究不足的具有药理活性化合物和许多独特植物次生代谢物的来源,其中包括 100 多种大麻素。经过多年的法律限制,大麻的研究最近在计算机模拟、体外和体内证明了大麻二酚 (CBD)、Δ9-四氢大麻酚 (Δ9-THC)、大麻二酚酸 (CBDA)、大麻素酸 (CBGA) 和其他几种大麻素对严重急性呼吸系统综合征冠状病毒-2 (SARS-CoV-2)、人类免疫缺陷病毒 (HIV) 和 γ-疱疹病毒的抗病毒活性。作用机制包括抑制病毒细胞进入、抑制病毒蛋白酶和刺激细胞固有免疫反应。大麻素的抗炎特性也在研究中,以减轻 COVID-19 的细胞因子风暴并控制 HIV 感染者的慢性炎症。回顾性临床研究支持 CBD、Δ9-THC 和大麻素混合物的抗病毒活性,一些前瞻性临床试验也是如此,但迫切需要设计适当的关于抗病毒大麻素的安全性和疗效的临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c16c/10133872/1e3d10677c76/cs-137-cs20220193-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验